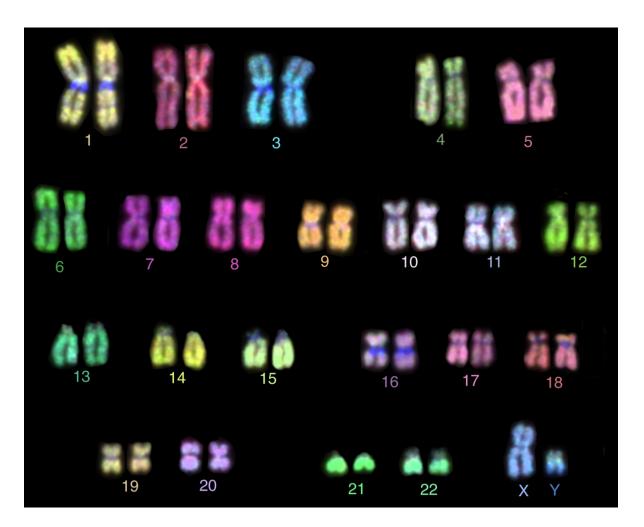
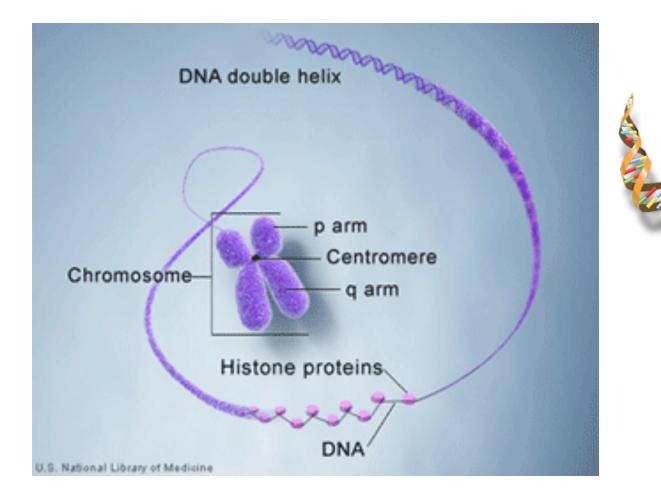


Genomics of "Wild-Type" GIST: Domestication In Progress



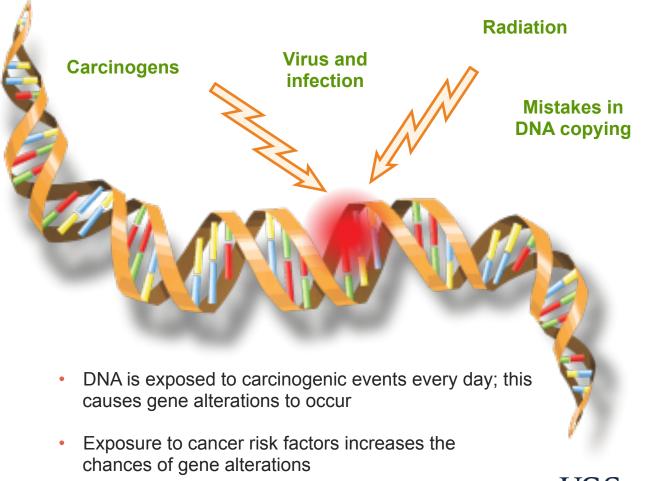
Jason Sicklick, MD Associate Professor of Surgery

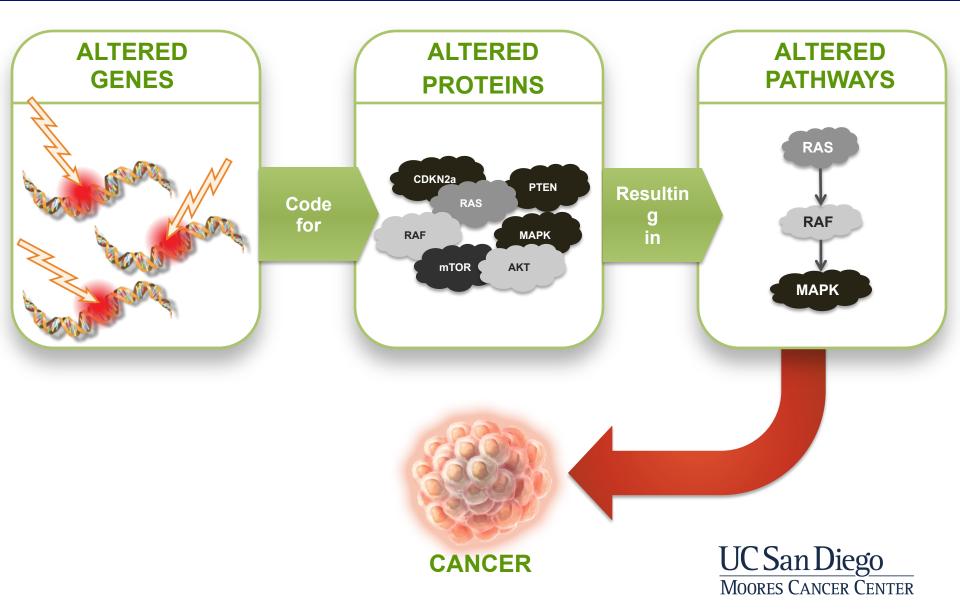
Where discoveries are delivered.sm


Genomics 101

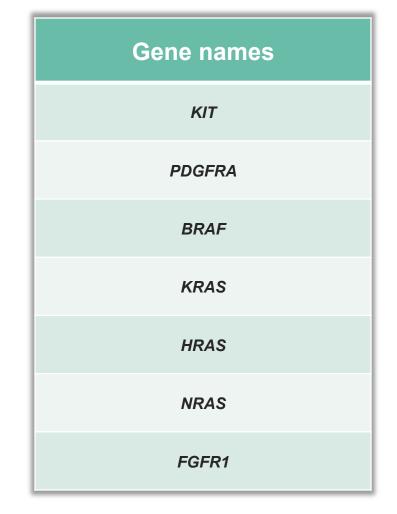
23 + 23 = 46 chromosomes

UC San Diego Moores Cancer Center

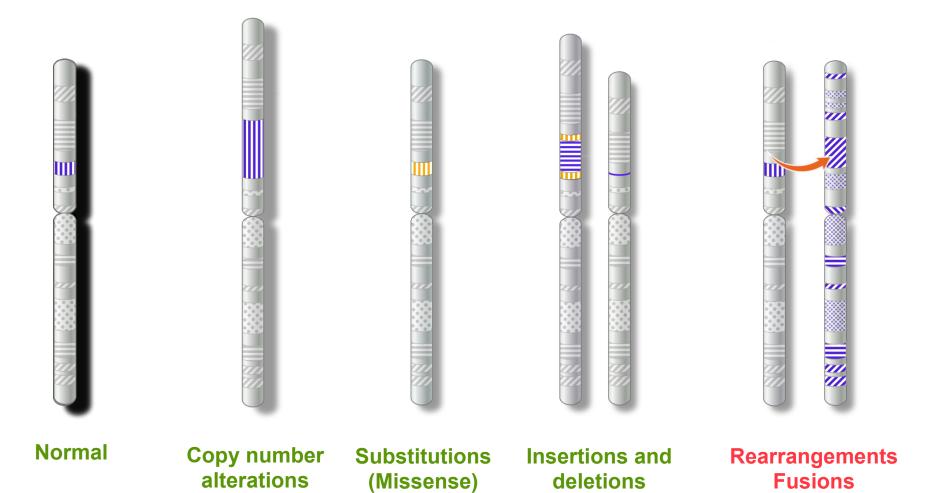

Genomics 101


A = T

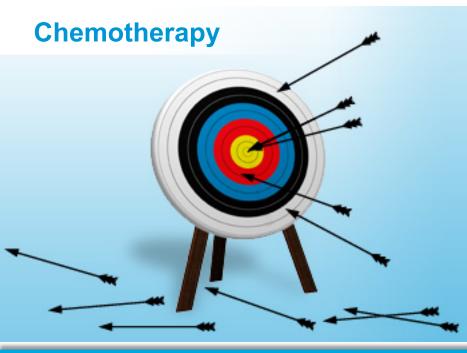
Cancer Is A Disease Of The Genome


UC San Diego Moores Cancer Center

How Gene Alterations Can Cause Cancer


Cancer Related Genes

Of the ~20,000 genes in the genome, only a subset of a few hundred are unambiguously associated with cancer



Types Of Alterations In Cancer Genes

UC San Diego Moores Cancer Center

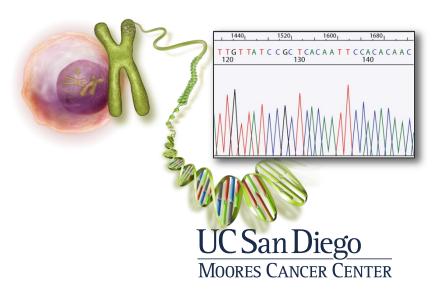
The Shift Toward Targeted Therapy

- Anticancer drugs may be highly effective in some, but less effective in others
- Patients encounter side effects which are often significant

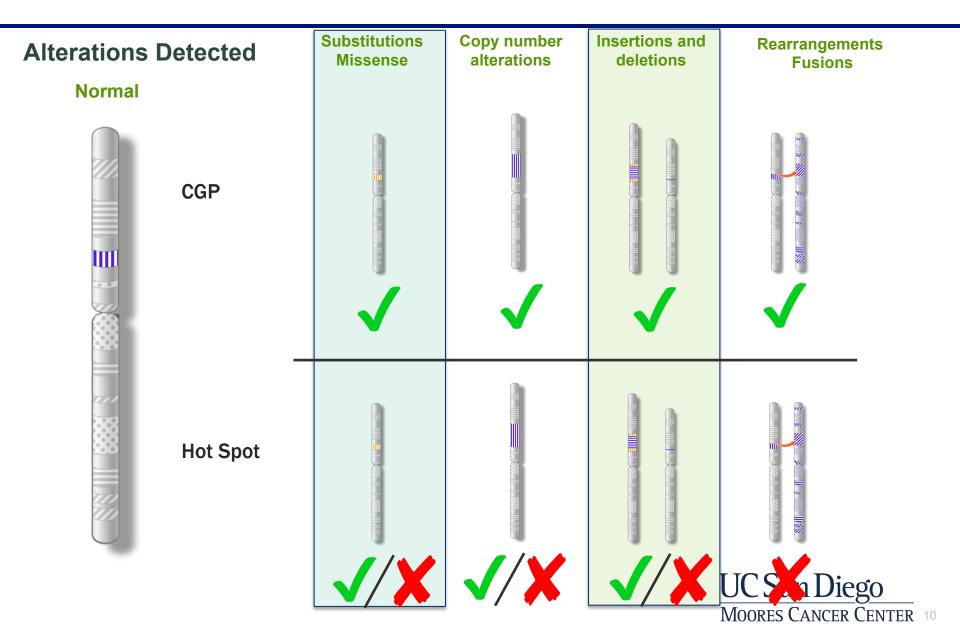
Targeted Therapy

- In personalized medicine, clinicians use biomarkers to predict a patient's response to therapy
- Patients are more likely to get therapies with the greatest impact which often have fewer side effects

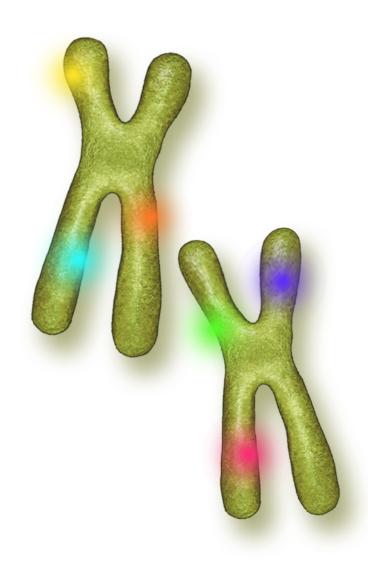
Advantages Of Comprehensive Genomic Profiling (CPG) vs. Traditional Hot Spot Testing

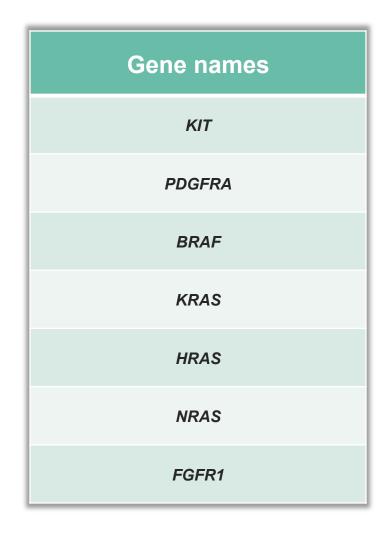

Hot Spot or Single-Marker Testing

- Misses some types of mutations (rearrangements/fusions, copy number alterations)
- Limited number of alterations screened at once
- Results are specific for the test used: need to know ahead of time what questions to ask
- Exhausts tissue



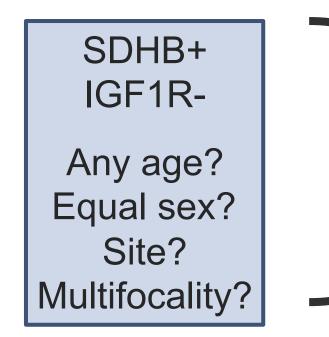
CGP


- Able to identify hundreds of clinically relevant mutations at once
- Allows the opportunity to identify all alterations
- Tissue sparing



CPG vs. Hot Spot


Cancer Related Genes in GIST



Known Driver Genes in 85-90% of GIST

Lack Mutations in *KIT*, *PDGFRA*, RAS Pathway (*NF1*, *RAS*, *BRAF*) and *SDH* Subunits

Quadruple Wild-type (qWT) GIST

- Genomics?
- Epidemiology?
 - Disease Biology?

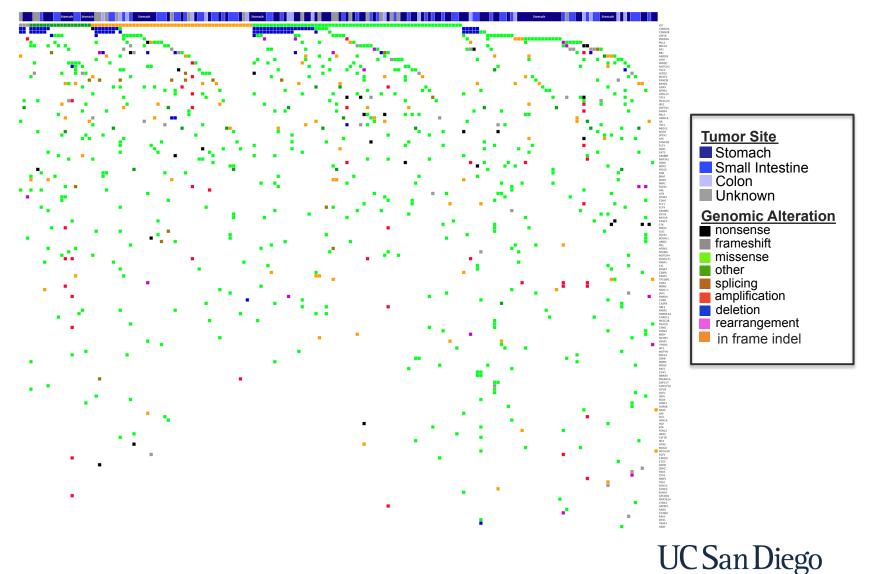
Broad genomic profiling of "quadruple-WT (qWT)" GISTs would reveal insights into the genomic alterations and disease biology of this understudied patient population.

Methods

Patient Population and Data Collection

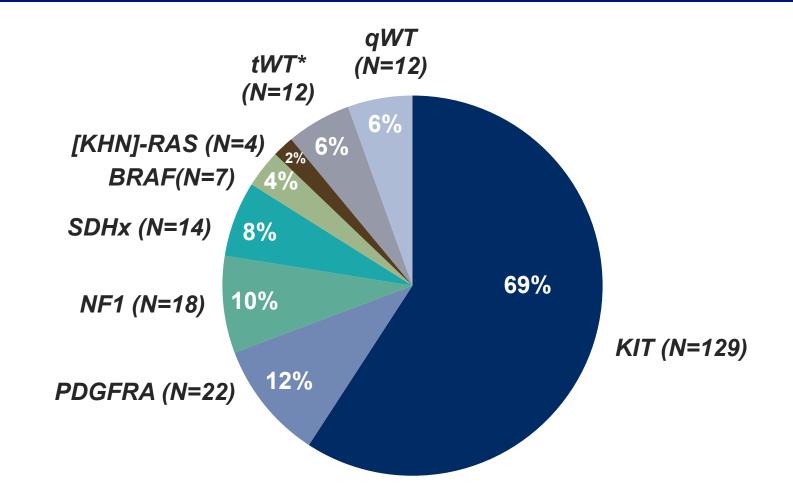
- Foundation Medicine, Inc. (FMI) database consisting of de-identified patients from across the U.S. (October 2012 May 2015).
- Retrospectively analyzed this prospectively collected data.

Broad Genomic Profiling


- DNA was extracted from FFPE tumor specimens.
- NGS assay utilizes the Illumina HiSeq 2500 instrument to sequence against hybridization-captured, adaptor ligation-based libraries for coding regions of 315 cancer-related genes plus introns from 28 genes frequently implicated in cancer transformation.

Methods (Continued)

Data Analysis


- Genomic alterations were further categorized:
 - Known somatic
 - Likely somatic
 - Variant of unknown significance (VUS).
- To understand of the potential deleterious effects of all missense VUS's, we analyzed them with 4 prediction modeling programs (SIFT, PolypPhen, MutationTaster, and MutationAssessor).
- Considered *potentially deleterious* if they were predicted deleterious by ≥50% tools. Of 1240 VUS's, we considered 325 (26.2%) potentially deleterious.
- Exome Aggregation Consortium (ExAC) Browser was used to exclude *missense variants* with a minor allele frequency >1% (NOTCH2, FANCD2, MAP3K1, MSH3, and ZNF217).

Somatic Genomic Landscape in 186 GIST

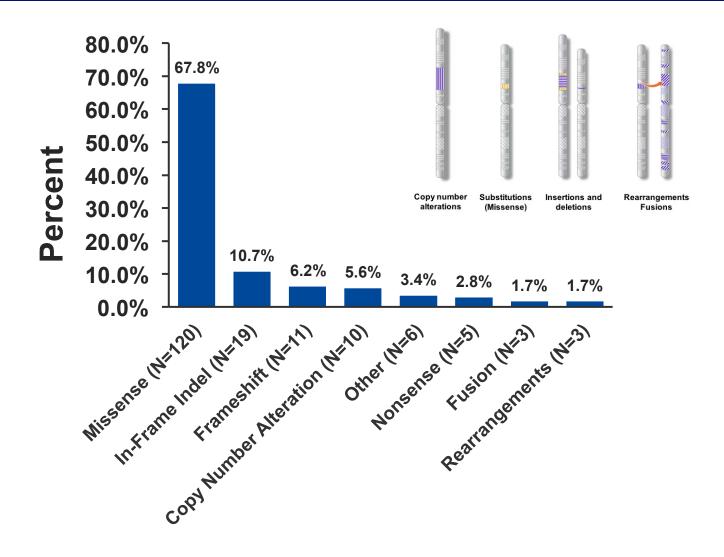
Moores Cancer Center

Driver Mutations in 186 GIST

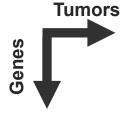
*tWT** = sequencing performed before FMI testing of SDHx genes

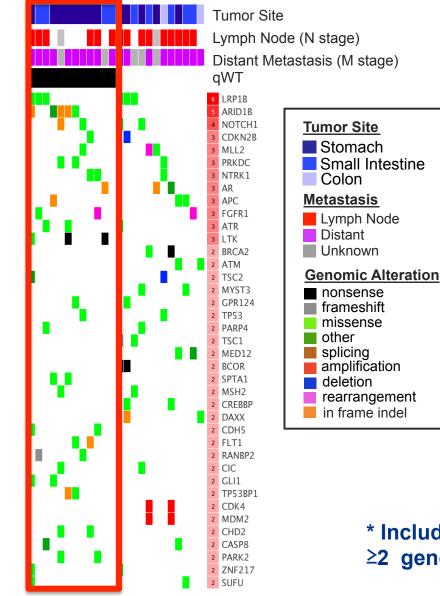
Demographics of GIST Patients

Variables		WT GIST	Non-WT GIST	P-value
variables		N (%)	N (%)	F-value
Total Patients		24	162	
Age (years, mean ± SD)		44.4 ± 15.7	50.0±11.1	<0.01
Sex	Female	12 (50.0)	66 (40.7)	0.51
	Male	12 (50.0)	94 (58.0)	
	Not Reported	-	2 (1.2)	
Primary GIST Site	Colon	2 (8.3)	15 (9.3)	0.26
	Small intestine	9 (37.5)	44 (27.2)	
	Stomach	13 (54.2)	83 (51.2)	
	Other	0 (0.0)	20 (12.3)	


Demographics of GIST Patients

Variables		qWT GIST	tWT GIST	P-value
Variables		N (%)	N (%)	F-value
Total Patients		12	12	
Age (years, mean ± SD)		44.0 ± 14.9	44.8 ± 17.1	0.90
Sex	Female	5 (41.7)	7 (58.3)	0.68
	Male	7 (58.3)	5 (41.6)	
	Not Reported	-	-	
Primary GIST Site	Colon	0 (0.0)	2 (16.7)	0.36
	Small intestine	4 (33.3)	5 (41.6)	
	Stomach	8 (66.7)	5 (41.6)	


Demographics of GIST Patients

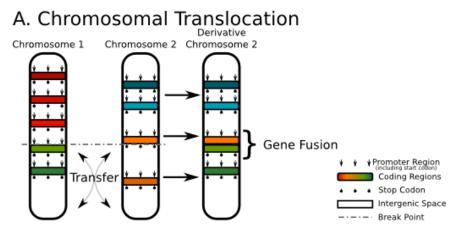

TNM Classification		qWT GIST	tWT GIST	P-value*
		N (%)	N (%)	F-value
Tumor Size (T)	T1 (≤ 2 cm)	0 (0.0)	0 (0.0)	0.05
	T2 (>2, ≤5 cm)	0 (0.0)	2 (16.7)	
	T3 (>5, ≤10 cm)	11 (91.7)	5 (41.6)	
	T4 (>10 cm)	1 (8.3)	4 (33.3)	
	Tx	0 (0.0)	1 (8.3)	
Regional Lymph Nodes (N)	N0	6 (50.0)	2 (16.7)	0.14
	N1	3 (25.0)	8 (66.7)	
	Nx	3 (25.0)	2 (16.7)	
Distant Metastases (M)	MO	0 (0.0)	0 (0.0)	1.0
	M1	9 (75.0)	8 (66.7)	
	Mx	3 (25.0)	4 (33.3)	

Types of Genomic Alterations Detected

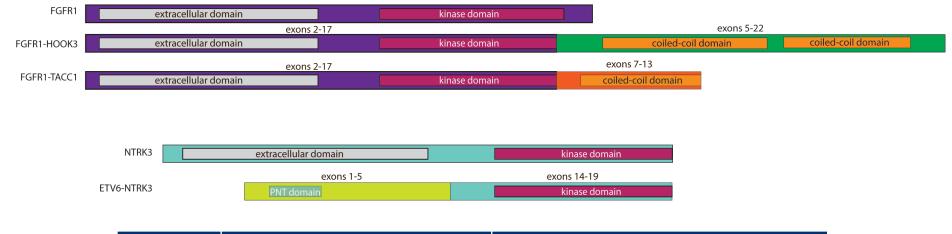
Heterogeneous Set of Genomic Alterations* (Known/Likely + Potentially Deleterious VUS)

* Include only genes with ≥2 genomic alterations

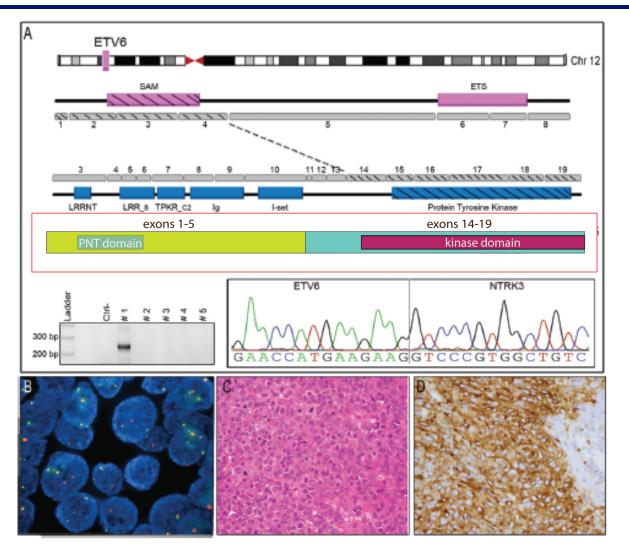
7 Genes Significantly More Affected


Gene	Aliases	Alterations in non-WT (%)	Alterations in WT (%)	P-value
ARID1B	AT Rich Interactive Domain 1B	11 (6.79%)	5 (20.83%)	0.04
FGFR1	Fibroblast growth factor receptor 1	4 (2.47%)	3 (12.5%)	0.047
ATR	Ataxia telangiectasia and Rad3 related	4 (2.47%)	3 (12.5%)	0.047
LTK	Lymphocyte receptor tyrosine kinase	2 (1.23%)	3 (12.5%)	0.02
SUFU	Suppressor of Fused	0 (0%)	2 (8.33%)	0.02
ZNF217	Zinc Finger 217	0 (0%)	2 (8.33%)	0.02
PARK2	Parkin RBR E3 Ubiquitin Protein Ligase	1 (0.62%)	2 (8.33%)	0.044

FGFR1 Gene Fusions Identified in 2/3rd GISTs


Gene Fusions

- Hybrid gene formed from 2 previously separate genes
- It can occur as a result of 3 mechanisms:


CTOS in November 2015

Gene	Fusion	Previously Reports
FGFR1	FGFR1-TACC1	Glioblastoma multiforme
		RET-HOOK3 fusion in
	FGFR1-HOOK3	papillary thyroid cancer
		Infantile fibrosarcoma
ETV6	ETV6-NTRK3	secretory breast carcinoma
		salivary gland tumors

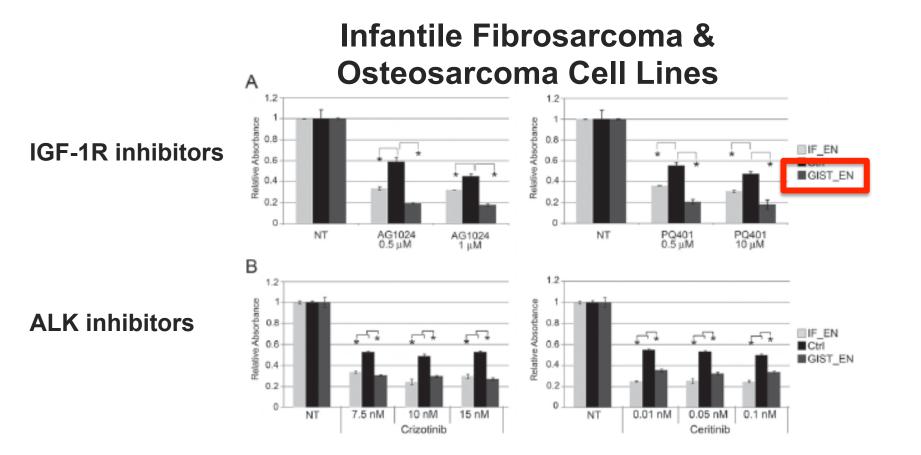
Shaw et al., Nature Reviews Cancer. 2013.

ETV6-NTRK3 in qWT GIST

Brenca et al., J Pathology. March 2016.

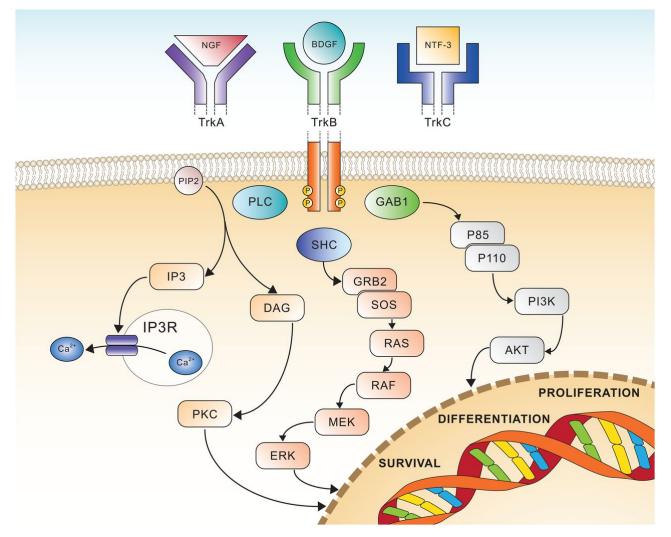
OHSU Validation in 2nd Study Population

Target Kinase	Fusion Partners
AKT3	MAGI3
ALK	ATIC, C2orf44, CARS, CLTC, EML4, FN1, KIF5B, KLC1, MSN, NPM1, PPFIBP1, PTPN3, SEC31A, SQSTM1, STRN, TFG, TPM3, TPM4, TRAF1, VCL
BRAF	AGK, AGTRAP, AKAP9, CLCN6, FAM131B, FCHSD1, GNAI1, KCTD7, KIAA1549, MAD1L1, MKRN1, NUDCD3, PLIN3, RNF130, SLC45A3, SOX6, TRIM24, ZKSCAN5
EGFR	EGFR variant III, CAND1, PSPH, SEPT14, SLC12A9
ERBB4	EZR
ERG	TMPRSS2
FGFR1	BAG4, CPSF6, ERLIN2, PLAG1, TACC1, ZNF703
FGFR2	AFF3, AHCYL1, BICC1, CASP7, CCDC6, CIT, KIAA1967, OFD1, SLC45A3
FGFR3	BAIAP2L1, TACC3
MET	MIR548F1, TPR
NTRK1	BCAN, CD74, MIR548F1, MPRIP, NFASC, TFG, TPM3, TPR
NTRK2	NACC2, QKI
NTRK3	ETV6
NRG1	CD74, SLC3A2
PDGFRA	KDR, SCAF11
PDGFRB	NIN
RAF1	DAZL, ESRP1, MSS51, SRGAP3
RET	AFAP1, CCDC6, ERC1, HOOK3, KIAA1468, KIF5B, NCOA4, PARG, PCM1, PRKAR1A, TRIM27, TRIM33
ROS1	CCDC6, CD74, CEP85L, EZR, GOPC, KDELR2, LRIG3, SDC4, SLC34A2, TFG, TPM3


Compliments of M. Heinrich and C. Corless, OHSU.

5 qWT GIST in OHSU Study Population

Age (Years)	Gender	Primary Tumor Location	Tumor Stage	SDHB Immunostaining	Fusion Panel Result
54	Male	Pelvic mass	Unknown	Unknown	FGFR1-TACC1
54	Male	Colon	Unknown	Positive	ETV6-NTRK3
49	Male	Small intestine	I 3NxMx	Positive	None detected
51	Female	Unknown	TxN1Mx	Positive	None detected
53	Male	Stomach	Unknown	Unknown	None detected


FGFR1	ex	xtracellular domain	ki	inase domain	
		exons 2	2-17		
FGFR1-TACC1	ex	xtracellular domain	ki	inase domain	coiled-coil domain
	NTRK3		· · · · · · · · · · · · · · · · · · ·		
	INT KK3	extracellular d	lomain	kır	nase domain
			exons 1-5	exons	14-19
	ETV6-NTRK3	PNT domai	n	kir	nase domain

ETV6-NTRK3 Sensitizes Cells to IGF1R and ALK Inhibitors

Brenca et al., J Pathology. March 2016.

Neurotrophic tropomyosin receptor kinase (NTRK)

Amatu et al., ESMO Open. 2016.

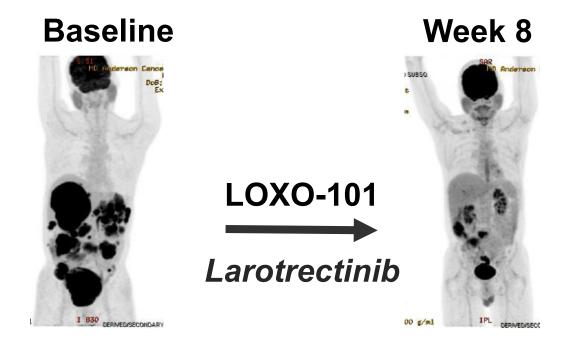
NTRK Inhibitors

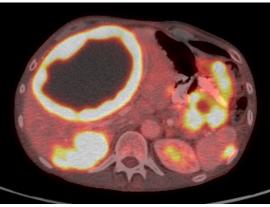
NCT/EudraCT number	Title	Drug	Targets	Phases	Patients	Start date
NCT02219711	Phase 1/1b study of MGCD516 in patients with advanced cancer	MGCD516	MET, AXL, c-kit, MER, DDR2, VEGFR, PDGFR, RET, Trk, Eph	1	120	August 201
NCT02568267	Basket study of entrectin b (RXDX-101) for the treatment of patients with solid tumors harboring NTRK1/2/3, ROS1, or ALK gene	Entrectinib (RXDX-101)	TrkA, TrkB, TrkC, ROS1, ALK	2	300	October 2015
NCT02097810	rearrangements (fusions) Study of oral RXDX-101 in adult patients with locally advanced or metastatic cancer targeting NTRK1, NTRK2, NTRK3, ROS1, or ALK molecular attentions			1/2	175	June 2014
NCT02650401	Study of RXDX-101 in children with recurrent or refractory solid tumors and primary CNS tumors			1	80	December 2015
NCT02048488/		TSR-011	TrkA, ALK	1/2	150	October
2013-000686-	escalation and cohort expansion trial					2012
37	of oral TSR-011 in patients with					
	lymphomas					
NCT02637687	Oral TRK inhibitor LOXO-101 for treatment of advanced pediatric solid or primary central nervous system tumors	LOXO-101	TrkA, TrkB, TrkC	1	36	December 2015
NCT02122913	Oral TRK inhibitor LOXO-101 for treatment of advanced adult solid			1	108	April 2014
NCT02576431	tumors Study of LOXO-101 in subjects with NTRK fusion positive solid tumors			2	151	October 2015
NCT02576431	Study of LOXO-101 in subjects with NTRK fusion positive solid tumors	(XI 184)	BOS1 MET	2	151	
NCT02576431	Study of LOXO-101 in subjects with NTRK fusion positive solid tumors fusion-positive advanced non-small cell lung cancer and those with other genotypes: ROS1 or NTRK fusions or	(XL184)	ROS1, MET, AXL	2	151	
NCT02576431 NCT01804530	Study of LOXO-101 in subjects with NTRK fusion positive solid tumors fusion-positive advanced non-small cell lung cancer and those with other genotypes: ROS1 or NTRK fusions or increased MET or AXL activity Phase 1 study of PLX7486 as single agent and with gemcitabine plus nab-pacilitaxel in patients with	(XL184) PLX7486		2	151	2015
	Study of LOXO-101 in subjects with NTRK fusion positive solid tumors fusion-positive advanced non-small cell lung cancer and those with other genotypes: ROS1 or NTRK fusions or increased MET or AXL activity Phase 1 study of PLX7486 as single agent and with gemcitabine plus nab-pacilitaxel in patients with advanced solid tumors A first-in-human study to evaluate the safety, tolerability and		AXL TrkA, TrkB,	-		
NCT01804530	Study of LOXO-101 in subjects with NTRK fusion positive solid tumors fusion-positive advanced non-small cell lung cancer and those with other genotypes: ROS1 or NTRK fusions or increased MET or AXL activity Phase 1 study of PLX7486 as single agent and with gemcitabine plus nab-pacitaxel in patients with advanced solid tumors A first-in-human study to evaluate the	PLX7486	AXL TrkA, TrkB, TrkC, FMS TrkA, TrkB,	1	160	2015 August 201 September

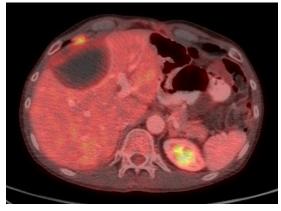
ALK, anaplastic lymphoma receptor tyrosine kinase; AXL, AXL receptor tyrosine kinase; c-kit mas/lstem cell growth factor receptor; CNS, central nervous system; DDR2, discoidin domain receptor 2; Eph, ephifn receptor tyrosine kinase; FMS, McDonough Feline Sarcoma Visat MER, MER receptor tyrosine kinase; MET, hepatocyte growth factor receptor; PDGRP, plateib-defived growth factor receptor; RET, rearranged during transfection; ROSI ; ROS proto-noogene 1; TIEZ, TEK receptor tyrosine kinase; TRK, topomyosin-related kinases (also known as TrKA, B,C for kinase A, B and C); VEGFR, vascular endothelial growth factor receptor.

Amatu *et al., ESMO Open.* 2016.

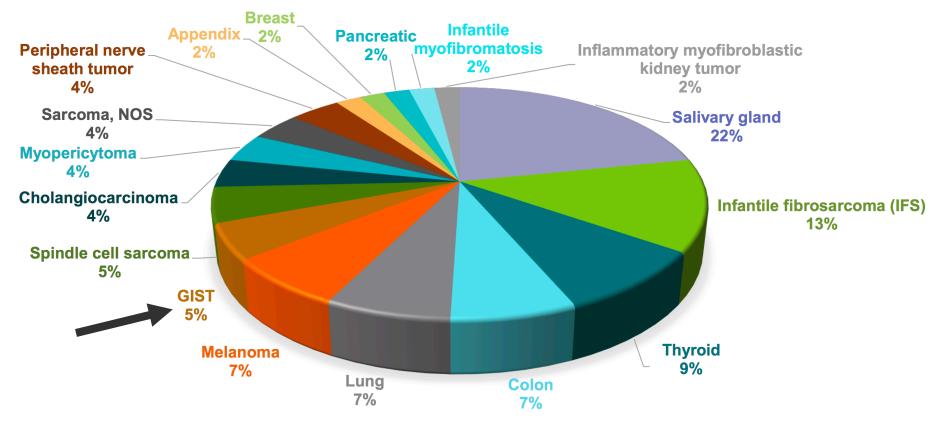
The efficacy of larotrectinib (LOXO-101), a selective tropomyosin receptor kinase (TRK) inhibitor, in adult and pediatric TRK fusion cancers

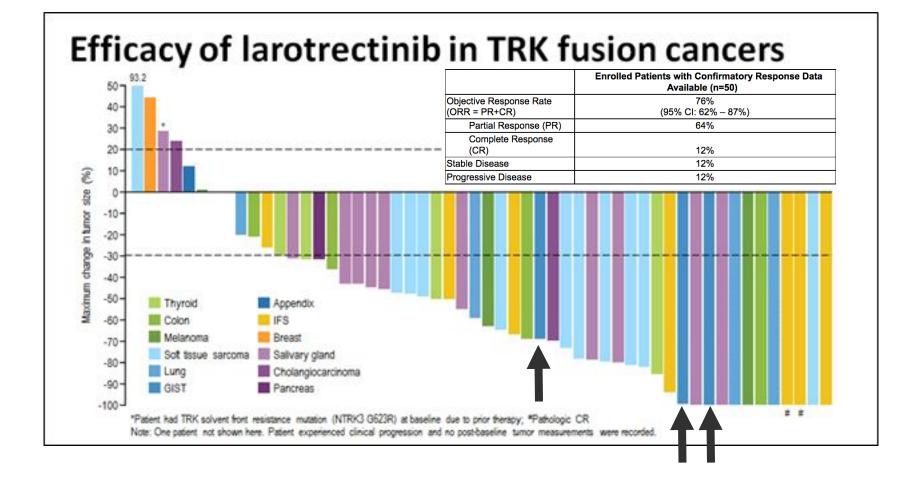

Hyman DM,¹ Laetsch TW,² Kummar S,³ DuBois SG,⁴ Farago AF,⁵ Pappo AS,⁶ Demetri GD,⁷ El-Deiry WS,⁸ Lassen UN,⁹ Dowlati A,¹⁰ Brose MS,¹¹ Boni V,¹² Turpin B,¹³ Nagasubramanian R,¹⁴ Cruickshank S,¹⁵ Cox MC,¹⁵ Ku NC,¹⁵ Hawkins DS,¹⁶ Hong DS,¹⁷ Drilon AE¹


¹Memorial Sloan Kettering Cancer Center, New York, NY; ²University of Texas Southwestern, Dallas, TX; ³Stanford University School of Medicine, Palo Alto, CA; ⁴Dana-Farber Cancer Institute/Boston Children's Cancer and Blood Disorders Center, Boston, MA; ⁵Massachusetts General Hospital, Boston, MA; ⁶St. Jude Children's Research Hospital, Memphis, TN; ⁷Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA; ⁸Fox Chase Cancer Center, Philadelphia, PA; ⁹Rigshospitalet, Copenhagen, Denmark; ¹⁰UH Cleveland Medical Center, Cleveland, OH; ¹¹Department of Otorhinolaryngology: Head and Neck Surgery, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA; ¹²START Madrid CIOCC, Hospital HM Universitario Sanchinarro, Madrid, Spain; ¹³Cincinnati Children's Hospital Medical Center, Cincinnati, OH; ¹⁴Nemour's Children's Hospital, Orlando, FL; ¹⁵Loxo Oncology, Inc., San Francisco, CA; ¹⁶Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA; ¹⁷The University of Texas MD Anderson Cancer Center, Houston, TX


PRESENTED AT: ASCO ANNUAL MEETING '17 Sides are the property of the author. Permission required for reuse. #ASCO17 Hyman, LBA2501

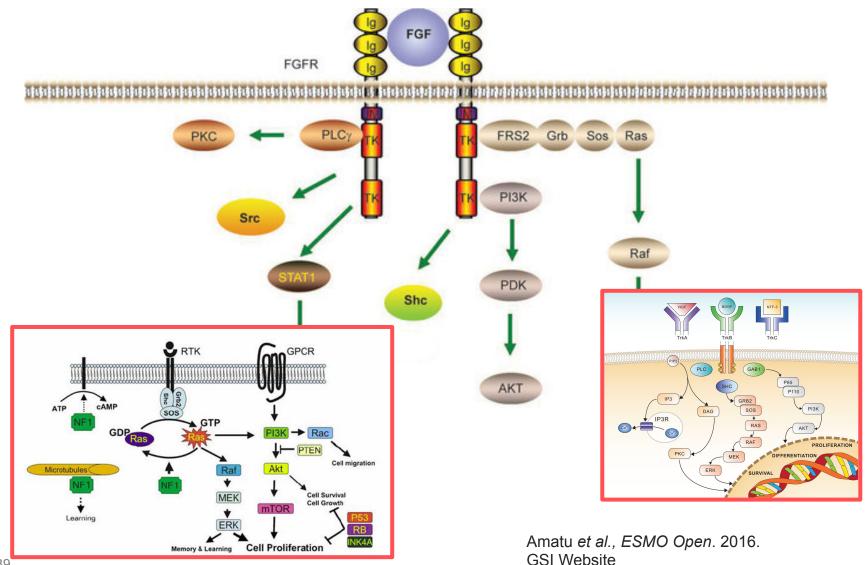
Treatment Refractory ETV6-NTRK3 GIST



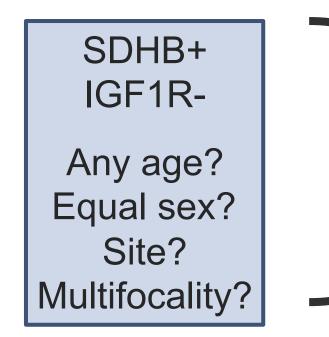


Shi et al,, JTM 2016.

Diversity of cancers treated - 17 unique types

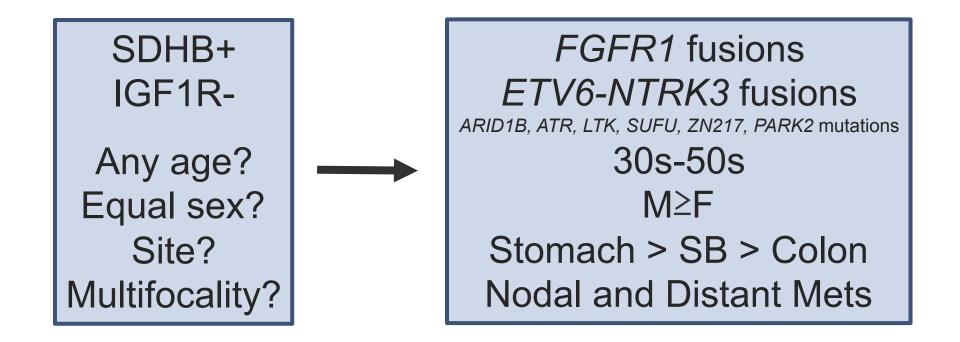


FGFR1 Gene Fusions Identified GIST

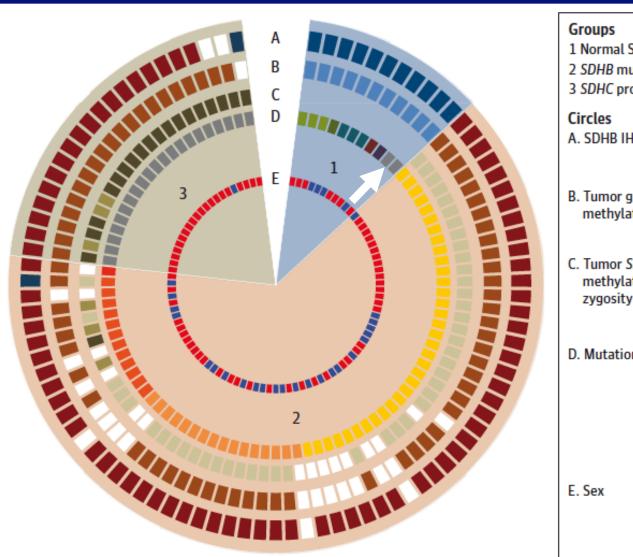


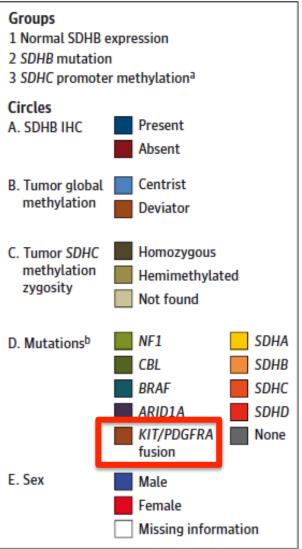
Fibroblast Growth Factor Receptor 1 (FGFR1)

Lack Mutations in *KIT*, *PDGFRA*, RAS Pathway (*NF1*, *RAS*, *BRAF*) and *SDH* Subunits


Quadruple Wild-type (qWT) GIST

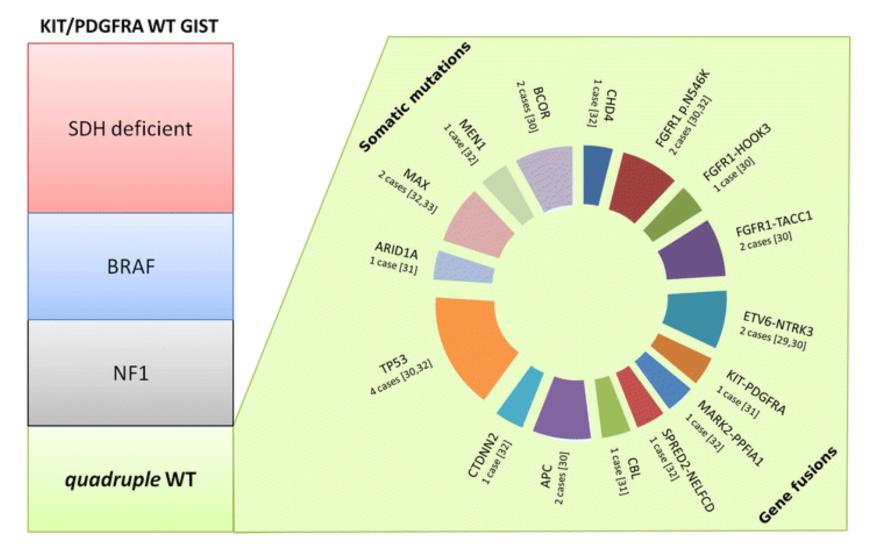
- Genomics?
- Epidemiology?
 - Disease Biology?


Lack Mutations in *KIT*, *PDGFRA*, RAS Pathway (*NF1*, *RAS*, *BRAF*) and *SDH* Subunits


Quadruple Wild-type (qWT) GIST

Shi et al., JTM. 2016.

NIH Wild-Type GIST Clinic: KIT-PDGFRA fusion



9 Known Gene Fusions in GIST

Patient	Age (Years)	Sex	Primary Tumor Location	Tumor Stage	Gene Fusion	
1	55	Male	Small bowel	T3N0M1	ETV6-NTRK3	
2	54	Male	Colon	Unknown	ETV6-NTRK3	
3	44	Male	Rectum	T2NxM0	ETV6-NTRK3	
4	54	Male	Pelvis mass	Unknown	FGFR1-TACC1	
5	54	Male	Stomach	T3N1M1	FGFR1-TACC1	
6	38	Female	Small bowel	T3N1M1	FGFR1–HOOK3	
7	Unknown	Female	Unknown	Unknown	KIT-PDGFRA	
8	63	Female	Small bowel	T3N0M1	MARK2-PPFIA1 SPRED2-NELFCD	
9 *	30	Female	Small bowel T4NxM0		PRKAR1B-BRAF	
Summary	Average: 48 Median: 54	Male 56% Female 44%	44% small bowel, but spans stomach to rectum	22% nodal metastases 44% distant metastases	33% ETV6-NTRK3 33% FGFR1 33% Others	

Shi *et al. J Translational Med.* December 2016. Brenca *et al., J Pathology.* March 2016. Boikos *et al., JAMA Onc.* July 2016. Pantaleo *et al., Mol Cancer Res.* July 2017. * UCSD Patient (unreported to date)

Progressive Fragmentation of "WT" GIST

Journal of the National Comprehensive Cancer Network

The Call of "The Wild"-Type GIST: It's Time for Domestication

Maha Alkhuziem, MBBS, MAS; Adam M. Burgoyne, MD, PhD; Paul T. Fanta, MD; Chih-Min Tang, PhD; and Jason K. Sicklick, MD

Alkhuzeim et al., JNCCN. May 2017.

Table 1. Matching Genomic Alterations With Targeted Therapies in GIST:Theoretical Precision Actionabilities Meriting Investigations (cont.)

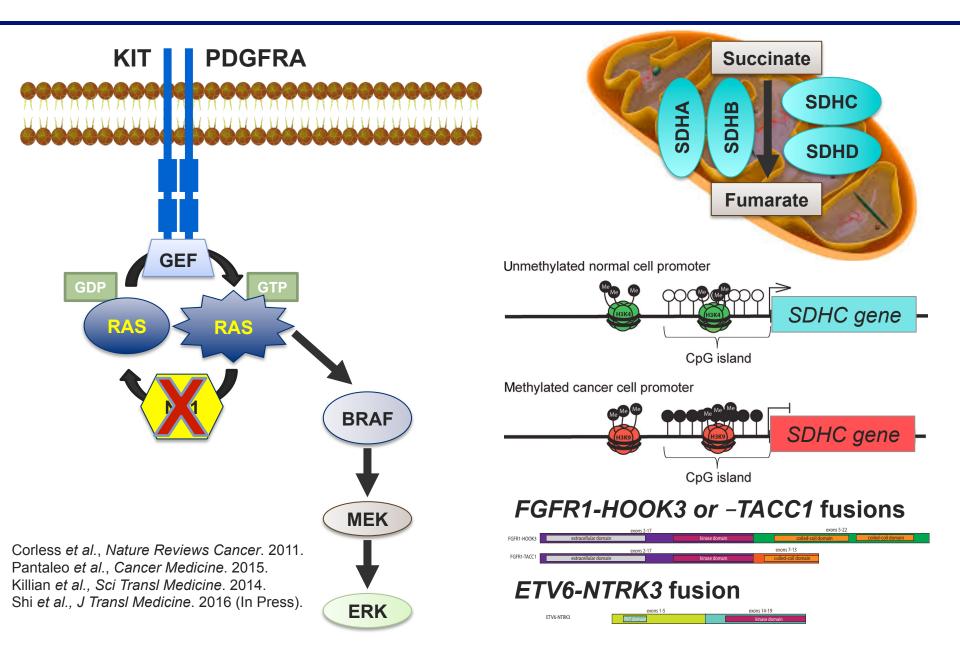
Gene	Pathways/Signaling	Matching FDA- Approved, On-Label Agents With Targets in GIST	Matching FDA- Approved, Off-Label Agents With Targets in GIST	Clinical Trials Enrolling Patients With GIST		
KRAS	МАРК		MEK inhibitors: cobimetinib, trametinib			
LTK	Transcriptional regulation		TKI: crizotinib			
	Insulin receptor signaling					
NF1	МАРК		MEK inhibitors: cobimetinib, trametinib			
NRAS	МАРК		MEK inhibitors: cobimetinib, trametinib			
PARK2	E3 ubiquitin ligase		CDK4/6 inhibitor:	Phase II (CDK4/6		
	Cyclin-CDK complexes		palbociclib	inhibitor): palbociclib		
PDGFRA	МАРК	Imatinib (first line)	TKI: ponatinib	Phase I (PDGFRA/TKI inhibitors): BLU-285, DCC-2618		
	PI3K/AKT/mTOR	Sunitinib (second line)				
	Jak/Stat	Regorafenib (third line)		Phase II (PDGFRA/TKI inhibitors): dovitinib, famitinib, olaratumab, onalespib, motesanib		
				Phase III (PDGFRA inhibitor): crenolanib		
SDHA	Epigenetic methylation		Hypomethylating agents: 5-azacytidine, decitabine	Phase I (glutaminase inhibitor): CB-839		
	HIF1-alpha expression		decitabilite			
SDHB	Epigenetic methylation		Hypomethylating agents: 5-azacytidine, decitabine	Phase I (glutaminase inhibitor): CB-839		
	HIF1-alpha expression		actuatine			
SDHC	Epigenetic methylation		Hypomethylating agents: 5-azacytidine,	Phase I (glutaminase inhibitor): CB-839		
	HIF1-alpha expression		decitabine	-		
SDHD	Epigenetic methylation		Hypomethylating agents: 5-azacytidine,	Phase I (glutaminase inhibitor): CB-839		
	HIF1-alpha expression		decitabine			
SUFU	Hedgehog pathway		GLI inhibitor: arsenic trioxide			
ZNF217	Transcriptional regulation					

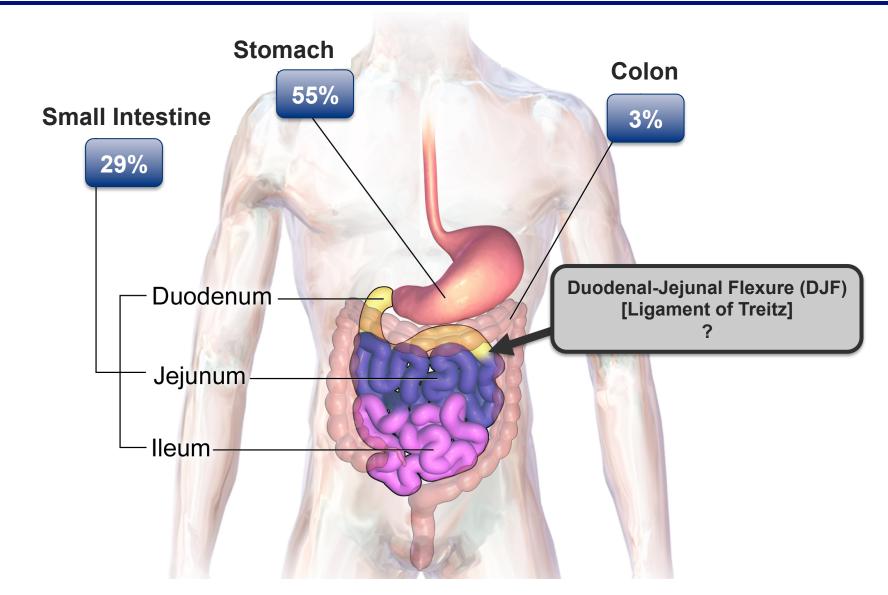
Gene	Pathways/Signaling	Matching FDA- Approved, On-Label Agents With Targets in GIST	Matching FDA- Approved, Off-Label Agents With Targets in GIST	Clinical Trials Enrolling Patients With GIST
ARID1A	Chromatin remodeling PI3K/AKT/mTOR		mTOR inhibitors: everolimus, temsirolimus	Phase I (PI3K inhibitors): alpelisib, buparlisib, TGR-1202
ARID1B	Chromatin remodeling PI3K/AKT/mTOR		mTOR inhibitors: everolimus, temsirolimus	Phase I (PI3K inhibitors): alpelisib, buparlisib, TGR-1202
ATR	DNA repair		DNA damaging agents: cisplatin, gemcitabine, topotecan PARP inhibitors: olaparib, rucaparib	
			Radiotherapy	
BRAF	МАРК	Regorafenib (third line)	BRAF V600E inhibitors: dabrafenib, vemurafenib MEK inhibitors: cobimetinib, trametinib	Phase II (BRAF V600E inhibitor): dabrafenit Phase II (MEK inhibitors): binimetinib, trametinib
ETV6-NTRK3	MAPK PI3K/AKT/mTOR JAK/STAT		TKI: crizotinib	Phase I (TRK inhibitor larotrectinib Phase II (TRK inhibitor): entrectinib
FGFR1	FGF	Regorafenib (third line)	FGFR inhibitors: Ienvatinib, pazopanib, ponatinib	Phase I (FGFR inhibitors): BGJ398, dovitinib Phase II (FGFR inhibitor): semaxanib
HRAS	МАРК		MEK inhibitors: cobimetinib, trametinib	
кіт	MAPK PI3K/AKT/mTOR JAK/STAT	Imatinib (first line) Sunitinib (second line) Regorafenib (third line)	TKIs: dasatinib, nilotinib, ponatinib	Phase I (TKIs): DCC-2618, OSI-930, PLX9486 Phase II (TKIs): BBI503, cabozantinib, dasatinib, famitinib, ganetespib, nilotinib, pexidartinib, sorafenib, sunitinib

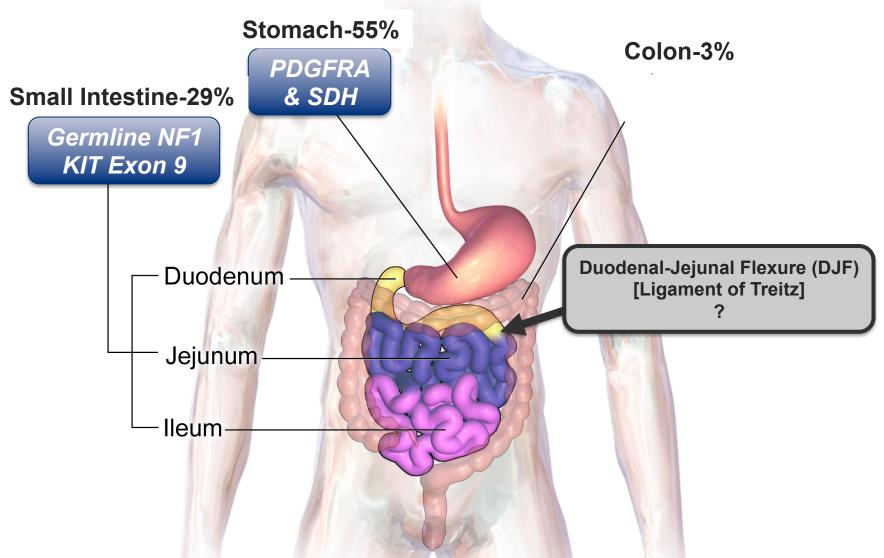
Summary #1

- "Quadruple Wild-Type: or "Unclassified" GIST occur in younger patients, occur in similar locations as non-qWT GIST, frequently metastasize to lymph nodes, and most are not truly "WT."
- Potentially deleterious gene fusions occur in adults with GIST and these are potentially targetable with drugs.
 - KIT inhibitors (*KIT-PDGFRA* fusion)
 - NTRK3 inhibitors (*ETV6-NTRK3* fusion)
 - FGFR1 inhibitors (FGFR1-TACC1/HOOK3 fusions)
 - BRAF inhibitors (*BRAF-PRKAR1B* fusion)
- Other driver genes at play:
 - ARID1A/D, ATR, LTK, MAX, PARK2, SUFU, ZNF217

Shi *et al. J Translational Med.* December 2016. Boikos *et al., JAMA Onc.* July 2016. Pantaleo *et al., Mol Cancer Res.* July 2017. Alkhuzeim et al., JNCCN. May 2017.

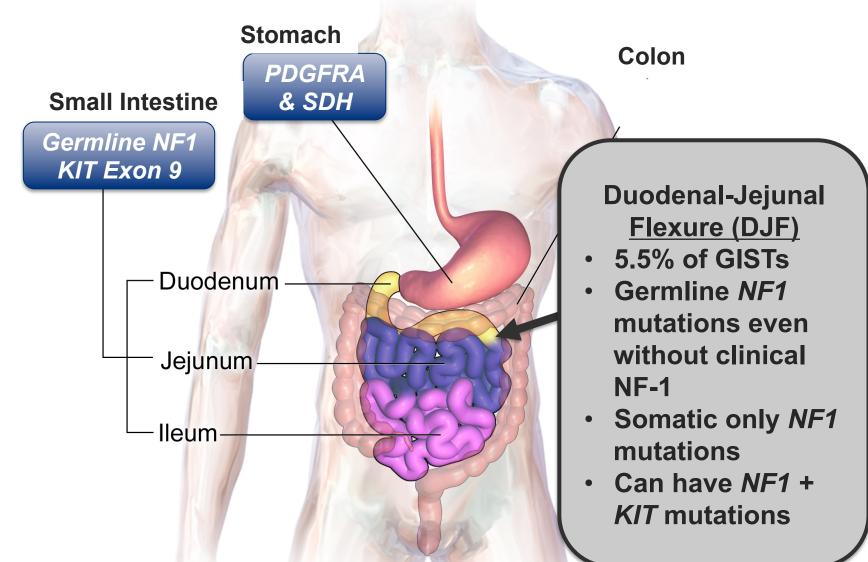

Is Location is a Biomarker for Gene Mutations?


Why WHERE you buy is more important than WHAT you buy.


Known Driver Genes in GIST

Anatomic Localization of GIST

Genes and Localization of GIST


Background: NF1 Mutant GIST

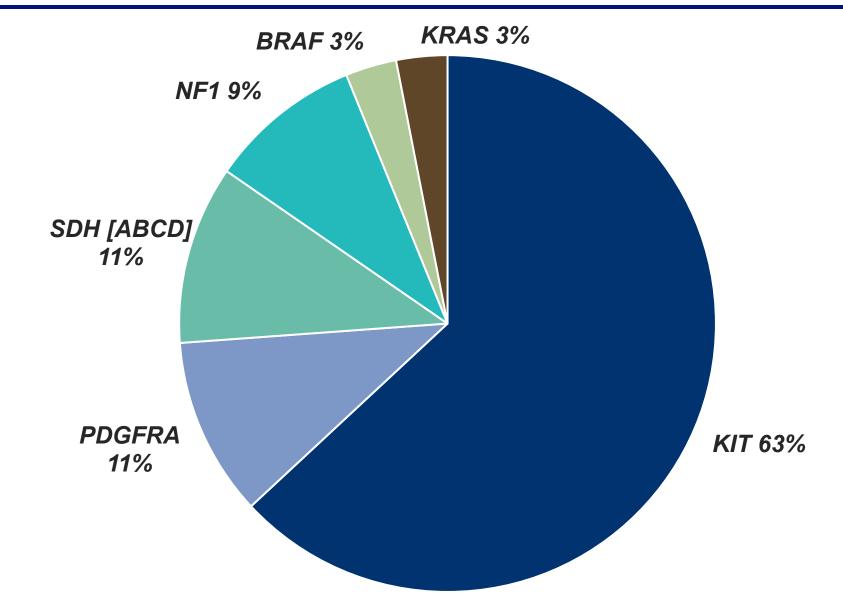
- 1. Often multifocal small intestine GISTs associated with Neurofibromatosis type 1 (NF-1)
- 2. NF-1 associated with 1.5% of GISTs
- 3. Somatic *NF1* mutant small bowel GIST was recently reported in the absence of a germline *NF1* mutation (Belinsky *et al.*, *BMC Cancer*, 2015).
- *4. NF1* gene mutations associated with NF-1 were recently reported (Gasparotto *et al.*, *Clin Cancer Research*, 2016):
 - Frequent in GISTs lacking *KIT/PDGFRA/BRAF* mutations or *SDH* inactivation
 - Especially if multifocal or with a multinodular growth pattern and a non-gastric location.

New Key Findings

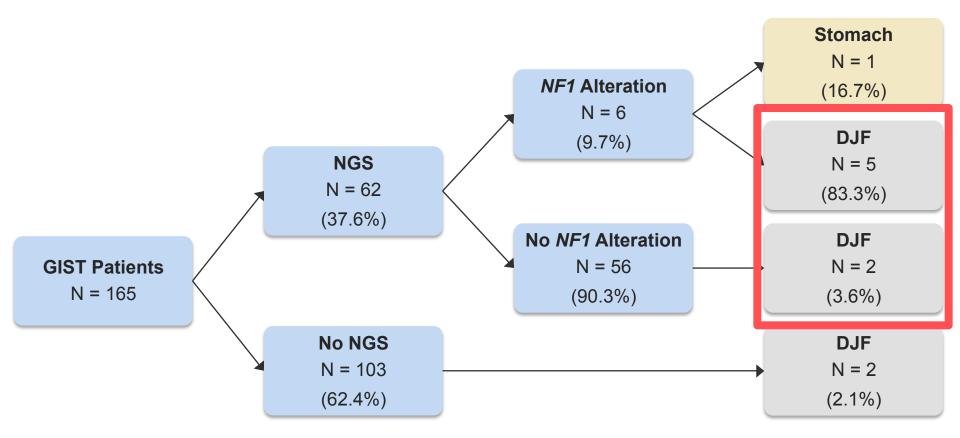
- 1. In three series, GISTs more frequently than 1.5% possess *NF1* genomic alterations
 - 6.1% (MSKCC, 7/115)
 - 9.7% (UCSD, 6/62)
 - 9.7% (FMI, 18/186)

New Key Findings

Methods


Primary Study Population

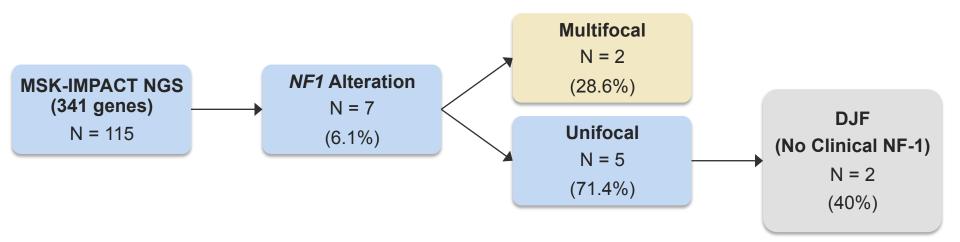
- Retrospective study of 165 GIST patients with from January 1, 2000 to April 30, 2017 at the UC San Diego Moores Cancer Center
- Data collected included age, sex, race, ethnicity, primary GIST site, tumor size, and mitotic index.


Next Generation Sequencing

- 62 patients underwent NGS of cancer-related genes beginning in 2014:
 - Foundation Medicine (315 genes)
 - UC San Diego Heath System Clinical Genomics Laboratory (397 genes)

Driver Mutations in 62 UCSD GIST

NF1 Genomic Alterations are Frequent at DJF

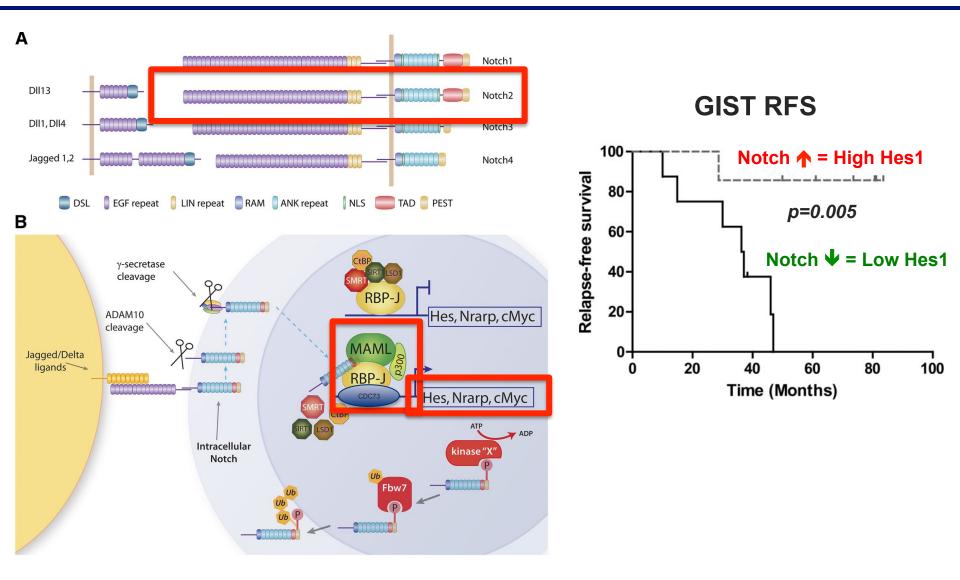

9 DJF GIST Patient Demographics

Characteristic	Number	%			
Age, years					
Median (range)	55 (36-80)				
Average	55.9 ± 15				
Sex					
Male	4	44.4%			
Female	5	55.6%			
Race					
Caucasian	7	77.8%			
African American	1	11.1%			
Asian/Pacific Islander	1	11.1%			
Ethnicity					
Non-Hispanic white	5	55.6%			
Hispanic/Latino	4	44.4%			

DJF GIST Clinicopathologic Features

Characteristic	Number	%					
Stage							
Localized	6	66.7%					
Regional	0	0.0%					
Distant	1	11.1%					
Unknown	2	22.2%					
Tumor Size, cm							
Median (range)	9 (1.5	5 - 15)					
Average	8.0 :	8.0 ± 5.0					
Mitotic Index							
Low	4	44.4%					
	4	44.4% 33.3%					
Low							
Low High	3	33.3%					
Low High Unknown Cell Morphology Spindle	3	33.3%					
Low High Unknown Cell Morphology	3 2	33.3% 22.2%					
Low High Unknown Cell Morphology Spindle	3 2 5	33.3% 22.2% 55.6%					

MSKCC Validation Cohort


3	11	2	1	4	5	10	7	6	CASE		_
15	8	1.5	13	5.3	3	1	2.5	2.1	Size (cm)		Mitotic Index
									MI (per 5 mm²)	Tumor	High Low Unknown
									NF1 (somatic)		Genomic Alteration Nonsense Frameshift
			SNP						NF1 (germline)	Drivers	 Missense In frame indel Deletion Splicing
									<i>KIT</i> (somatic)	Reported GIST E	
									BRAF (somatic)	Repor	
									<i>ARID1A</i> (somatic)		
CDC73	EP300	NOTCH2		MAML2					Notch Pathway	Others	
ASXL1 MEN1	ERBB4 RB1 TSC2				BCOR				Others	Oth	

Summary #2

- Duodenal-Jejunal Flexure (DJF) or Ligament of Treitz GISTs frequently possess NF1 alterations (somatic and/ or germline), which occur even in the absence of clinical NF-1
- This represents a previously unappreciated presentation of clinical NF-1.

Solitary GIST arising at the DJF may be a biomarker for clinically occult NF-1, even if single gene testing reveals a *KIT* mutation.

NF1 and **Notch** Genomic Alterations

64

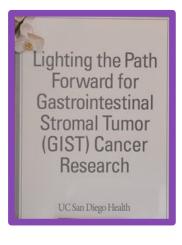
Clinical Implications

Any DJF GIST may be considered for *NF1* gene analysis, and any positive result has the following clinical implications:

- 1. Additional cancer screening according to expert guidelines.
- 2. Familial genetic counseling and screening.
- 3. Personalizing systemic therapy as *NF1* mutant GISTs tend to be imatinib-resistant.

Slicing the Pie...It's Time for Personalization

Shi et al., JTM. 2016.



Funding

The Kristen Ann Carr Fund

Anonymous Patient-Advocate Donors (UCSD Foundation Fund #3661)

Acknowledgements

Sicklick Lab

Chih-Min Tang Adam Burgoyne Eileen Shi Mayra Yerba Sudeep Banerjee Grace Ma Taylor Coe Kelly Fero Tracy Lee

OHSU

Michael Heinrich Chris Corless

UCSD

Paul Fanta Adam Burgoyne Olivier Harismendy John Thorson James Murphy Lisa Madlensky Elena Martinez Dwayne Stupack Michael McHale

Mayo Clinic

Tamas Ordog Sabriya Syed

U of Miami

MDACC

Neeta Somaiah David Hong Billy Wang

MSKCC / U Penn

Ron DeMatteo

Columbia

Gary Schwartz Andrea Califano

UC San Diego Moores Cancer Center

Jason K. Sicklick, MD, FACS

jsicklick@ucsd.edu

Where discoveries are delivered.sm