

Association of ABCG2 polymorphism with clinical efficacy of imatinib in patients with gastrointestinal stromal tumor (GIST)

ASCO 50° ANNUAL SCIENCE & SOCETY

Dong Hoe Koo^{1,4}, Min-Hee Ryu¹, Baek-Yeol Ryoo¹, Mo Youl Beck¹, Young-Soon Na², Jae-Gook Shin³, Sang Seop Lee³, Eun-Young Kim³, and Yoon-Koo Kang¹

¹Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; ²Asan Institute for life science, Asan Medical Center, Seoul, Korea; ³Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine and Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Korea; ⁴Division of Hematology/Oncology, Department of Internal Medicine, Kangbuk Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

Background

- 1) Imatinib is a substrate of drug metabolizing enzymes, including those of the cytochrome P450 (CYP) system, and of several drug transporters.
- Differences in imatinib pharmacokinetics among individual patients may be influenced by genetic polymorphisms and be associated with clinical imatinib efficacy.
- 3) This study evaluated the correlation of genetic polymorphisms with trough imatinib levels and clinical efficacy in GIST patients.

Materials & Methods

- 1) 284 patients with GIST were enrolled in the present study
- who received imatinib for therapy at the Asan Medical Center (Seoul, Korea)
- from Oct 2010 to Nov 2011,
- histologically documented GIST accompanied by KIT overexpression, or KIT or
- PDGFRA mutation; age ≥ 18 years; and good treatment compliance

2) Genotyping

- Genotyping for the CYP3A5*3C 6986A>G (rs776746), ABCB1 1236C>T (rs1128503), ABCB1 2677 G>A>T (rs2032582), ABCB1 3435C>T (rs1045642), ABCG2 34G>A (rs2231137), and ABCG2 421C>A alleles (rs2231142) was carried out using the SNaPshot® method in accordance with the manufacturer's protocol. Analyses were performed with GeneMapper (ver. 3.7) software. Hardy–Weinberg equilibrium was confirmed for all of the analyzed SNP data.

3) Determination of plasma imatinib Level

- At any time period at steady-state, blood samples (at least 4 mL) were collected before the morning dose of imatinib, usually 22 to 26 hours after the previous dose. Imatinib plasma levels were measured by liquid chromatography-tandem mass spectrometry at Seoul Clinical Laboratories (Seoul, Korea).

Patients Characteristics (N=209)				
Characte	eristics	N (%)		
Sex	Male	122 (58.4%)		
Age	Median, range	54.7 (26-81)		
B -1	Gastric	94 (45.0%)		
Primary site	Small bowel/others	115 (55.0%)		
6	Total/Partial	32 (15.3%)		
Gastrectomy	Not done	177 (84.7%)		
	Palliative	145 (69.4%)		
Purpose of imatinb therapy	Adjuvant	50 (23.9%)		
	Neoadjuvant	14 (6.7%)		
	KIT exon 11	144 (73.5%)		
Mutation status	KIT exon 9	23 (11.7%)		
(N=196)	Wild type	20 (10.2%)		
	Other	9 (4.6%)		

Genotype frequencies of CYP3A5, ABCB1 and ABCG2 genes among patients with GIST

Genotype		1			
		Wild type	Hetero	Variant	P-value*
CYP3A5	6986A>G	13 (6.2%)	68 (32.5%)	128 (61.2%)	0.444
ABCB1	1236C>T	35 (16.7%)	94 (45.0%)	80 (38.3%)	0.499
	2677G>A/T	41 (19.6%)	135 (64.6%)	33 (15.8%)	0.149
	3435C>T	81 (38.8%)	98 (46.9%)	30 (14.4%)	0.915
ABCG2	34G>A	119 (56.9%)	75 (35.9%)	15 (7.2%)	0.629
	421C>A	103 (49.3%)	88 (42.1%)	18 (8.6%)	0.972

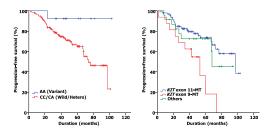
Imatinib plasma trough level according to genotype

			1			-				
Genotype (N)		Imatinib trough level (ng/mL)		P-value*	P-value [†]	P-value*				
		Mean	SD							
	AA (13)	1342.8	450.3							
CYP3A5	CYP3A5 6986A>G	AG (68)	1375.6	633.3	0.918	0.764	0.656			
		GG (128)	1415.8	711.7						
		CC (35)	1346.3	673.9	0.205	1				
1236C>	1236C>T	CT (94)	1347.2	678.3		0.573	0.092			
		TT (80)	1480.7	662.1						
		GG (41)	1477.4	774.9	0.394					
ABCB1	2677G>A/T	Hetero (135)	1350.2	620.5		0.315	0.447			
		TT (33)	1495.8	734.3						
		CC (81)	1454.9	672.1	0.338					
	3435C>T	CT (98)	1343.4	708.1		0.258	0.239			
		TT (30)	1423.9	538.1	Ī					

Genotype (N)		Imatinib trough level (ng/mL)			P-value [†]					
		Mean	SD	P-value*	P-value	P-value*				
		GG (119)	1360.5	486.8	0.930					
	34G>A	GA (75)	1393.8	727.1		0.940	0.959			
		AA (15)	1405.7	659.2						
ABCG2		CC (103)	1339.3	655.3						
	421C>A	CA (88)	1477.4	693.5						
		AA (18)	1347.9	648.6						

*After adjusting for sex, age, BSA, Hb, Albumin, and CCr

*Patients who received imatinib for metastatic or recurrent GIST (N=145)


Progression-free survival according to genotype in patients with metastatic GIST (N=145)

Genotype or characteristic (N)		Progression-	free survival	P-value	
Gen	denotype or characteristic (N)		5Y-PFS (%)	95% CI	P-value
		AA (8)	100.0	-	
CYP3A5	6986A>G	AG (52)	62.6	49.4-75.8	0.771
		GG (85)	67.3	57.3-77.3	
		CC (26)	67.0	48.9-85.1	
	1236C>T	CT (66)	71.0	60.0-81.9	0.686
		TT (53)	63.4	50.4-76.4	
		GG (26)	76.4	60.0-72.7	
ABCB1	2677G>A/T	Hetero (95)	65.6	56.0-75.2	0.943
		TT (24)	68.8	50.3-87.3	
		CC (56)	68.1	55.9-80.3	
	3435C>T	CT (67)	69.9	58.9-80.9	0.682
		TT (22)	52.7	31.8-73.6	
		GG (82)	65.4	55.1-75.7	
	34G>A	GA (53)	69.3	56.9-81.7	0.673
		AA (10)	74.1	46.9-100.0	
		CC (68)	67.1	55.9-78.3	
ABCG2	421C>A	CA (64)	63.2	51.4-75.0	0.139
		AA (13)	92.3	77.8-100.0	
	421C>A	CC/CA (132)	65.0	56.9-73.1	0.047
	421C>A	AA (13)	92.3	77.8-100.0	0.047

Progression-free survival according to clinical factors in patients with metastatic GIST (N=145)

Genotype or characteristic (N)		Progression-	P-value		
		5Y-PFS (%)	95% CI	P=value	
Sex	Male (85)	66.2	56.1-76.3	0.750	
Sex	Female (60)	67.5	55.6-79.4	0.760	
Age	≤ 65 years (115)	73.5	65.4-81.6	0.005	
	> 65 years (30)	38.5	21.1-55.9	0.005	
Primary site	Gastric (62)	97.0	68.5-125.5	0.931	
	Small bowel/others (83)	73.8	-	0.931	
Mutation status	KIT exon 11 (95)	73.5	64.6-82.4		
	KIT exon 9 (16)	18.2	0.00-37.1	0.007	
	Others (23)	72.5	54.3-90.7		

Progression-free survival curves according to ABCG2 421C>A genotype, and mutation status

Multivariate Analysis for Progression-free survival

Factor		Hazard ratio 95% CI		P-value
	Female	Reference		0.570
Sex	Male	1.20	0.64-2.28	0.570
	≤ 65 years	Reference		0.019
Age	> 65 years	2.29	1.14-4.57	0.019
	AA	Reference		0.158
ABCG2, 421C>A	CA/CC	4.22	0.57-31.17	0.158
	KIT exon 11	Refe	rence	0.033
Mutation status	KIT exon 9	2.75	1.29-5.87	0.009
	Others	1.38	0.62-3.06	0.434

Conclusion

- We found that the transporter gene polymorphism in ABCG2, 421C>A, could influence the clinical efficacy of imatinib in patients with advanced GIST receiving imatinib 400 mg daily.
- Patients with AA variants of ABCG2 421C>A constituted about 9% of total patients, and exhibited significantly favorable PFS in advanced GIST.
- However, there was no significant difference found in imatinib plasma trough level according to genotype, including ABCG2 421C>A.

Acknowledgments

 This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A121929).

S Hall A2, #251 (abstr 10544)

Leading the Future of Health) ASAN Medical Conner