

UNIVERSITY OF MIAMI HEALTH SYSTEM

Metabolomic profiling of Gastrointestinal Stromal Tumor (GIST) in Human Tissue Samples and Xenografts Danny Yakoub MD PhD^{1, 4}, Vered Marks PhD², Zhiqiang Wang MD¹, Ana Paz-Mejia BA ^{3,4}, Elizabeth Paulus ^{1,4}, Anthony Capobianco PhD¹, Jonathan Trent MD PhD^{3, 4}, Jamie Walls PhD², <u>Alan Livingstone MD FACS^{1, 4}</u>

¹Division of Surgical Oncology - Department of Surgery, ²Department of Chemistry, ³ Division of Oncology - Department of Medicine, ⁴Sylvester Comprehensive Cancer Center University of Miami-Miller School of Medicine, Miami, Florida, USA.

Figure 7. Variable

samples.

importance in cluster

separation of tissue

Background

There is a growing need for novel agents to treat resistant GIST. The goal of this study was to characterize and identify potential therapeutic targets in the metabolic profile of GIST.

Methods

Human GIST T1 cells were incubated with imatinib 0.5 µM with harvesting at time 0, 24 hrs and 48 hrs. Tumor, adjacent control tissue samples from 10 patients (Seven exposed to imatinib or sunitinib) and three tumor samples from xenografts in nude mice models (no TKI exposure) were extracted for analysis. ¹H-NMR 500MHz spectra, using а with a spectrometer equipped cryoprobe head, were acquired and Energy state, processed. glucose (cytosolic glycolysis versus mitochondrial Krebs cycle), protein and lipid metabolism (indicators of proliferation and invasiveness) metabolomic profiles were assessed globally in correlation with clinical and histopathologic findings.

metabolite assignments

 Table 1. Clinical

characteristics of involved patients

						•		•					
Sample ID	Age	Sex	Race	Site	Treatment at time of sampling	Clinical response	GIST subtype	Size in cms	% viable	Mitoses /50 HPF	Exon 9	Exon 11	PDGFRA
T1	68	м	Hispanic	stomach	Imatinib	Minimal	spindle	2.6	100	>10	0	0	0
T2	57	м	Caucasian	stomach	Imatinib	Marked	spindle	13	50	0	0	1	1
Т3	64	F	Caucasian	sigmoid colon	Sunitinib	Moderate	epithelioid	3	90	1	0	1	0
T4	62	F	Caucasian	stomach	Imatinib	Marked	spindle	6	5	1	0	1	0
T5	73	F	Caucasian	stomach	None	N/A	mixed	4	100	3	0	1	0
Т6	67	м	Caucasian	rectum	Sunitinib	Minimal	spindle	5.5	20	0	1	0	0
T7	61	м	African Am	stomach	None	N/A	spindle	16	60	0	0	0	0
Т8	42	м	Hispanic	stomach	None	N/A	spindle and epith	15	50	0	0	0	0
Т9	70	м	African Am	abd wall	Imatinib	Progression	epithelioid	27	80	0	0	1	0
T10	65	F	African Am	stomach	Sunitinib	Progression	epithelioid	6	60	32	0	1	0

Findings in cell lines, tissues and xenografts suggest shift from cytosolic glycolysis (glucose decrease and increased lactate with minimal changes in pyruvate) towards the mitochondrial Krebs cycle (elevated glutamine and glutamate synthesis) in all tumor samples. Aspartate, myoinositol, and cell membrane as phosphocholine/ phospholipids such glycerophosphocholine were greater in untreated GIST xenografts compared to treated tumors. Alanine, and phosphocholine were taurine, proline, ADP significantly higher in tumor tissue extracts compared to control (imatinib treated) (p<0.05). Tumor stage, mitotic index or mutation type did not correlate with metabolomics profile. Differences were accentuated among untreated patients. Partial Least Squares-Discriminant Analysis (PLS-DA) model successfully separated tumor tissues from controls ($R^2Y=0.56$).

Results

Conclusion Metabolomic profiling of GIST cell lines, patient and xenograft GIST samples exposed to KIT inhibitors suggest that cytosolic glycolysis and phospholipid biology may be important not only in the GIST phenotype but may be ameliorated with KIT inhibition by imatinib. Further understanding of GIST metabolomics may lead to the identification of new therapeutic targets.