GIST Summit 2010

Diagnosis, Prognosis and KIT/PDGFRα Genotyping in Gastrointestinal Stromal Tumors

Saturday Sept 25 2010
Wei-Lien (Billy) Wang MD
Department of Pathology
Sections of Sarcoma Pathology & Dermatopathology
Gastrointestinal Stromal Tumors

Role of Pathologic Diagnosis and Risk Assessment

Mutation Analysis
Gastrointestinal Stromal Tumor

- Arise from the interstitial cells of Cajal (ICC)
- ICC are important in coordinating peristalsis
GIST

Sites of Involvement

Omentum, mesentery, pelvis and retroperitoneum = EGIST (<1%)

Gross Appearance

- Most originate from muscularis propria (muscle layers)
- Size varies greatly (median of 10 cm)
- Can grow inwards or out

Courtesy of Brian Rubin
GIST
Morphology

- Spindle cell
- Epithelioid
- Mixed
Mimics of GIST

Carcinoma
Melanoma
Leiomyoma
Leiomyosarcoma
Schwannoma
Fibromatosis
Immunohistochemical Profile of GISTs

<table>
<thead>
<tr>
<th>H&E</th>
<th>CD117 (KIT)</th>
<th>CD34</th>
<th>Smooth muscle actin</th>
<th>S100 protein</th>
<th>Desmin</th>
<th>Pan-keratin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95%</td>
<td>70%</td>
<td>30%</td>
<td>5%</td>
<td>2%</td>
<td><1%</td>
</tr>
</tbody>
</table>

KIT (CD117)+ (95%)
- CD34 + (70%)
- SMA + (30-40%)
- Desmin neg
- S-100 protein neg
- Keratin neg

DOG1 +
- (95% / 40% of KIT neg GIST)

Courtesy of Brian Rubin
GISTs

Clinical Behavior

Behavior is difficult to predict.

Most aggressive GISTs metastasize within 5 yrs.

Small subset may metastasize up to 20 yrs after presentation.

Tendency for intra-abdominal spread and metastasis to liver.

*Never metastasize to lymph nodes.
Prognostic Factors

- Size
- Mitotic Rate
- Anatomic Location
 - Pleomorphism
 - Cellularity
 - Necrosis
 - Mucosal Invasion
- Proliferation Markers (Ki-67, Mib-1, PCNA, etc)
- DNA Flow Cytometry
- Image Analysis
- Nuclear Organizer Regions
2007 NCCN GIST

Risk Assessment Guidelines

<table>
<thead>
<tr>
<th>Tumor Parameters</th>
<th>Risk of Progressive Disease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Size</td>
</tr>
<tr>
<td>Mitotic Index ≤ 5 per 50 hpf</td>
<td>≤ 2 cm</td>
</tr>
<tr>
<td></td>
<td>> 2 ≤ 5 cm</td>
</tr>
<tr>
<td></td>
<td>> 5 ≤ 10 cm</td>
</tr>
<tr>
<td></td>
<td>> 10 cm</td>
</tr>
<tr>
<td>Mitotic Index > 5 per 50 hpf</td>
<td>≤ 2 cm</td>
</tr>
<tr>
<td></td>
<td>> 2 ≤ 5 cm</td>
</tr>
<tr>
<td></td>
<td>> 5 ≤ 10 cm</td>
</tr>
<tr>
<td></td>
<td>> 10 cm</td>
</tr>
</tbody>
</table>

Modified from Miettinen & Lasota, Semin Diagn Pathol, 2006 by Dr. Chris Corless, OHSU. Data based on long-term follow-up of 1055 gastric, 629 small intestinal, 144 duodenal and 111 rectal GISTs. [Miettinen et al. 2005 and 2006]
Overall Survival by Risk Group

Risk Groups

- Normal pop.
- Very low
- Low
- Intermediate
- High
- Overtly malignant

Years since diagnosis

Estimated proportion surviving
GIST Reporting

- Size
- Site of Involvement
- Mitotic Count (per 50 hpfs)
- Resection margins
- Document metastases
KIT/PDGFRA Genotyping
Majority (86%) of GISTs are characterized with recurrent mutations involving the gene *KIT* or *PDGFRA*

- Both genes encode for proteins which are located on the cell surface
- Plays a role in cell growth and survival
- Regulated by a cytokine, Stem Cell Factor (SCF)
Normal activation by stem cell factor

Abnormal self-activation resulting from mutation

\[\text{SCF} \quad \text{SCF} \quad \text{SCF} \quad \text{SCF} \]

\[\text{Regulated signaling cascade} \quad \text{Unregulated, constitutive signaling cascade} \]

\[\text{Kit} \quad \text{Kit} \quad \text{Kit} \quad \text{Kit} \]
• Most have mutations in KIT
• Certain portion of the genes (i.e. exons) encode for different parts of the protein are characteristically mutated in GISTs
• Beneficial to know which exons are effected

N=950 GISTs Tumors Analyzed In Heinrich & Corless Labs

KIT (78.5%)
- Exon 9
- Exon 11
- Exon 13
- Exon 17

PDGFRA (7.5% total)
(35% of KIT-WT)
- Exon 12
- Exon 14
- Exon 18
Mutation Types

- Many types of mutations
- Point mutations, deletions, duplications, etc.
- Reported with area of protein affected (ex. V559_V560del, A502_Y503dup, V560D)
- Can also be important to know specific areas of protein involved within an exon
- Area of on-going research

N=58 Exon 11 (UTMDACC)
Analysis of *KIT/PDGFRα* Genotyping

Formalin Fixed Paraffin Embedded (FFPE)

- Immunohistochemistry (CD117, CD34, SMA, Des, S100, Pan-K)
- H&E X1
- Review and mark slide for microdissection
- Unstained x 10

Overlay on H&E and scrape tissue from unstained

Extract DNA for *KIT* testing (11, 9, 13, 17)
(theoretical 1 in 5 cells – 20%)
Clinical Use of Kinase Genotyping of GISTs

- Genotyping of GISTs for *KIT* and *PDGFRA* mutations may be useful for:
 1. Confirmation of diagnosis KIT IHC (-) GISTs
 2. Prediction of clinical response to imatinib and those that may require different dosage of imatinib
 - ex. exon 9
 3. Triage patients who are at high risk of failing imatinib therapy to enroll in other clinical trials
 - ex. PDGFRA D842V mutations and Wildtype
Confirmation of Diagnosis in KIT IHC (-) Tumors

Progression free survival

Patients harboring KIT exon 9 mutations

Require higher doses of imatinib

<table>
<thead>
<tr>
<th>O</th>
<th>N</th>
<th>Number of patients at risk:</th>
<th>Treatmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>27</td>
<td>14 10 9 6 4 3 1 0</td>
<td>400 mg</td>
</tr>
<tr>
<td>21</td>
<td>31</td>
<td>26 21 20 18 14 9 8 6</td>
<td>800 mg</td>
</tr>
</tbody>
</table>
Frequency and Clinical Significance of *KIT*

KIT exon 11: (60–70%) Arise anywhere in GI tract. Most responsive to Imatinib.

KIT exon 9: (5–15%) Small intestine. Respond to Imatininib at higher doses.

KIT exon 13: (1%) Clinical responses to IM observed but uncharacterized. (**IM resistance point mutations)**

KIT exon 17: (1%) Clinical responses to IM observed but uncharacterized. (**IM resistance point mutations**)
Frequency and Clinical Significance of PDGFRA and being WT

PDGFRA exon 12: (1%) Rarely originate from the intestine. Clinical responses to IM observed.

PDGFRA exon 14: (<1%) Unknown, only few tumors described in the literature.

PDGFRA exon 18: (5%) Most originate from the stomach. D842V Resistant to IM.

Wild type: (10–15%) Primary resistance to imatinib more common; 40% respond to IM.
Role of KIT genotyping and Resistance

- **Primary Resistance**: 10-15% will not respond as well to imatinib – intrinsically resistant
 - ex. Wildtype (indicate other mechanisms involved), PDGFRA D842V
- **Secondary Resistance**: 50-70% of patients on imatinib will progress and develop resistance
 - Most common cause is the development of a second mutation
 - Most often involve exons 13 and 17 effecting the activation A loop or ATP binding domain resulting in shift to active confirmation or blocking imatinib binding
5 days Imatinib
Long term Imatinib Treatment
Secondary Resistance

- In advancing disease, multiple clones can exist within the same tumor nodule and within separate tumor nodules; each with different mutations
- Very heterogeneous
- Mutation testing does not typically need to be done for secondary resistance
Other Mechanisms of Resistance

• KIT Amplification
• BRAF mutations (KIT Wildtype)
• Insulin Growth Factor
• Loss of Heterozygosity
• AXL overexpression
• Heat Shock Protein 90
• Decreased absorption of imatinib
Familial GIST

- Germline mutation in exon 11.

Familial GIST

Gross Pathology

GISTs associated with Neurofibromatosis

- Similar morphology.
- Mutations are different.
 - Wild type for KIT
- Different mechanism for these tumors.
 - IGFR inhibitors?
Thank You.

- Dr. Alexander Lazar MD/PhD
- Dr. Jonathan Trent MD/PhD

Gastrointestinal Stromal Tumor

Understanding Your GIST Pathology Report

Jason L. Hornick, MD PhD
Harvard Medical School
Brigham and Women’s Hospital

Alexander J.F. Lazar, MD PhD
Sarcoma Research Center
University of Texas M. D. Anderson Cancer Center

Edited by Julia Doswell Royster, PhD
Science Coordinator, GIST Support International