Advances in the Surgical Management of GI Stromal Tumors

GIST Summit
September 14, 2013

Kelly K. Hunt, M.D.
Professor of Surgery
Agenda

- Advances in diagnosis and treatment
- Surgical management of GISTs by anatomic site
- Neoadjuvant therapy
- Laparoscopic resection
- Surgical management of metastatic disease
Gastrointestinal Stromal Tumors

- GISTS are rare neoplasms requiring multidisciplinary management
- Management has been revolutionized with the introduction of tyrosine kinase inhibitors
- Rapid progress from bench to bedside
- Rigorous clinical investigation redefining the standards of care
Background

- Approximately 6000 new cases of GIST diagnosed in US each year
- Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumor of the GI tract
- Thought to originate from the interstitial cells of Cajal
- Males and females affected equally
- Mean age of 63 years at diagnosis
Diagnostic Criteria

• Anatomic Site: GI-tract, mesentery, omentum, retroperitoneum

• Appropriate histologic appearance

• CD117 (KIT receptor) immuno-reactivity
Distribution of GIST in the GI Tract

Most common anatomic locations of GISTs.4,5,7,8

- Stomach (50\%-70\%)
- Small intestine (20\%-30\%)
- Colon/rectum (<10\%)
- Retroperitoneum (<5\%)
- Omentum/mesentery/esophagus/other (<5\%)
Gastrointestinal Stromal Tumors
Clinical Presentation

Signs/symptoms related to location of tumor

- GI hemorrhage
- Abdominal mass
- Vague GI pain / discomfort
- Anorexia, weight loss, nausea, anemia
- Surgical emergencies – perforation, bleeding

Often asymptomatic, incidental finding
Establishing Diagnosis

- History and Physical Exam
- Pathologic Assessment
 - About 95% of GISTs are positive for KIT (CD117)
- Radiologic Assessment

 CT imaging
 - Mass
 - Absence regional lymph node metastases
 - Metastases: liver, implants
Prognostic Factors

<table>
<thead>
<tr>
<th>Good prognosis</th>
<th>Poor prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor < 5 cm</td>
<td>Tumor > 10 cm</td>
</tr>
<tr>
<td>Low mitotic rate (< 2 /10 HPF)</td>
<td>High mitotic rate (>5–10 /10 HPF)</td>
</tr>
<tr>
<td>Low proliferation index</td>
<td>Tumor rupture</td>
</tr>
<tr>
<td>Absence of necrosis</td>
<td>High proliferation index</td>
</tr>
<tr>
<td>Gastric tumor</td>
<td>Necrosis</td>
</tr>
<tr>
<td>Age < 40 years</td>
<td>Extraintestinal tumor</td>
</tr>
<tr>
<td>Male gender</td>
<td>Male gender</td>
</tr>
</tbody>
</table>
Surgical Principles

- Surgical resection is standard practice for localized GIST
 - Generally no role for radiation
 - GISTs are mostly refractory to standard chemotherapy

- Most recurrences distant rather than local
 - Liver or widespread intra-abdominal disease
 - Recurrence rates are about 50% at 5 years

- Goal of surgery: Achieve complete resection
Surgical Principles

- Aim is to resect the tumor with negative margins
 - Small bowel 2-3 cm segmental resection
 - Stomach 1-2 cm wedge resection
- The pseudocapsule of the tumor should not be violated

Warning:
Slides contain photographs of surgical specimens
Small bowel GIST
Tyrosine kinase inhibitors

- Effective in reducing recurrence after surgery and against metastases
- Considered for treating tumors before surgery (neoadjuvant) when tumors are large or in anatomic sites that could benefit from reduction in tumor size before resection

Demetri G et al., N Engl J Med, 2004
GIST Patient Treated With Imatinib:

CT Scan Results: Decrease in Tumor Volume

June 27
Before Therapy

October 4
After Therapy
GIST Prior to Therapy
GIST After Therapy
Treatment of GIST

- Localized Resectable Disease
 - Surgical Resection
 - Extent of resection dependent on anatomic site

- Locally Advanced Unresectable Disease
 - Gleevec (Imatinib mesylate)
 - Surgical resection of residual disease (if downstaged)
 - (little prospective data to support survival benefit)

- Metastatic Disease
 - Gleevec - FDA approved 2002
 - Possible surgical resection of residual disease
 - (if response)
 - Secondary resistance (median 24 months)
 - – dose escalation, sunitinib or other trials
Esophageal GIST

- Tumors < 2cm that don’t involve adjacent structures can be resected.
- Tumors > 2cm and those close to juncture of stomach may require esophagectomy (through left abdominothoracic incision).
- Large tumors that involve other structures (such as diaphragm) may require imatinib treatment before surgery (neoadjuvant) to reduce the size of the tumor first.
Gastric GIST

- < 2cm tumors may be managed nonoperatively
 - Endoscopic surveillance to monitor growth
- Tumors near esophagus may be surgically removed to avoid more extensive resection
- Tumors > 3cm or with chance of invading other organs such as liver or diaphragm should be considered for neoadjuvant imatinib
- Tumors in mid-body of stomach could be resected laparoscopically
Gastric GIST
GIST of small intestine

- Neoadjuvant imatinib may be considered for duodenal GIST because of proximity to pancreas
- Tumors in jejunum and ileum are often relatively large because of later diagnosis
 - <5 cm possible laparoscopic resection
 - Other organs may be involved and could benefit from neoadjuvant imatinib
Small bowel GIST after therapy
Small bowel GIST involving the mesentery
GIST of colon or rectum

- Tumors < 3cm can be considered for resection
- Tumors that may involve sphincters or other organs could be considered for neoadjuvant imatinib to reduce need for radical resection or colostomy.
Rectal GIST before and after treatment
Neoadjuvant therapy

- Rationale:
 - Decrease the size of the tumor
 - Decrease the vascularity of the tumor
 - Diminish the extent of resection required

 - 1% complete response, 73% partial response, 9% stable disease, 1% progressive disease
 - Responding patients had a median decrease in tumor volume of 85% (27-99%)
Neoadjuvant Therapy for GIST

Locally Advanced Primary

Metastatic/Recurrent

Potential Benefits

- Decreased tumor size
- Decreased surgical complexity
- In situ measure of drug response

- Assessment of tumor biology
- Early treatment of microscopic distant disease
Neoadjuvant Therapy for GIST

- Randomized phase II trial
 - 19 pts received neoadjuvant imatinib for 3, 5, or 7 days
 - No effects on surgical morbidity
 - Increased tumor apoptosis with increased exposure
 - 62% had evidence of radiographic response

 McAuliffe et al, Ann Surg Onc, 2009

- RTOG 0132
 - Multi-institutional prospective trial of 53 pts
 - 2 months neoadjuvant imatinib + 2 yrs adjuvant therapy
 - No significant effects on surgical morbidity
 - 5 yr PFS: 57% in primary and 30% in metastatic/recurrent
 - 5 yr OS: 77% in primary and 68% in metastatic/recurrent

Laparoscopic Resection for GIST?
Laparoscopic ports
A total of 11 nonrandomized studies reviewed 765 patients: 381 LR and 384 OR.

A higher proportion of high-risk tumors and gastrectomies in the OR compared with LR.

LR results in superior short-term postoperative outcomes without compromising oncological safety and long-term oncological outcomes compared with OR.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Recruitment period</th>
<th>Country</th>
<th>Study design</th>
<th>LR</th>
<th>OR</th>
<th>Conversion</th>
<th>Mean/median size (cm)</th>
<th>Inclusion/exclusion</th>
<th>Study quality scoring scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wan16</td>
<td>2012</td>
<td>2004-2011</td>
<td>China</td>
<td>Retro</td>
<td>68</td>
<td>88</td>
<td>0</td>
<td>3.5</td>
<td>No long term follow up, no tumor risk assessment</td>
<td>8</td>
</tr>
<tr>
<td>Pucci20</td>
<td>2012</td>
<td>2002-2012</td>
<td>USA</td>
<td>Retro</td>
<td>57</td>
<td>47</td>
<td>1</td>
<td>3.8</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Karakousi10</td>
<td>2011</td>
<td>1998-2009</td>
<td>USA</td>
<td>Retro</td>
<td>40</td>
<td>40</td>
<td>13</td>
<td>3.9</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Lee15</td>
<td>2011</td>
<td>2001-2008</td>
<td>Korea</td>
<td>Retro</td>
<td>50</td>
<td>50</td>
<td>1</td>
<td>2.9</td>
<td>70% of cases GIST only</td>
<td>7</td>
</tr>
<tr>
<td>Goh11</td>
<td>2010</td>
<td>2001-2009</td>
<td>Singapore</td>
<td>Retro</td>
<td>14</td>
<td>39</td>
<td>1</td>
<td>4.0</td>
<td>Short follow up of the laparoscopic arm</td>
<td>6</td>
</tr>
<tr>
<td>Nakamori14</td>
<td>2008</td>
<td>1998-2003</td>
<td>Japan</td>
<td>Retro</td>
<td>25</td>
<td>31</td>
<td>0</td>
<td>5.0</td>
<td>10 patients with metastatic GIST</td>
<td>6</td>
</tr>
<tr>
<td>Catena15</td>
<td>2008</td>
<td>2001-2006</td>
<td>Italy</td>
<td>Retro</td>
<td>21</td>
<td>25</td>
<td>0</td>
<td>4.5</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Nishimura17</td>
<td>2007</td>
<td>1993-2004</td>
<td>Japan</td>
<td>Retro</td>
<td>39</td>
<td>28</td>
<td>1</td>
<td>4.0</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Mochizuki18</td>
<td>2006</td>
<td>2000-2004</td>
<td>Japan</td>
<td>Retro</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>2.7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Otani9</td>
<td>2006</td>
<td>1993-2004</td>
<td>Japan</td>
<td>Retro</td>
<td>35</td>
<td>25</td>
<td>0</td>
<td>3.5</td>
<td>1 patient with metastatic GIST</td>
<td>6</td>
</tr>
</tbody>
</table>

Study quality based on Newcastle Ottawa Scale with maximum of 4 for selection, 3 for comparability and 2 for outcome.
Tumor size impacts surgical approach
Gastric GIST
Prognostic Factors Determining Outcome after Surgical Resection

- Tumor size
- Mitotic index
- Location
Nomogram for Predicting Recurrence-Free Survival

Prognostic Factors Determining Outcome after Surgical Resection

- Tumor size
- Mitotic index
- Location
- Mutation type: deletion and insertion mutations in \textit{KIT} exon 11 and 9
Is there a role for surgery in patients with metastatic disease?
Favorable Prognostic Factors following GIST Recurrence

- Disease-free interval >20 months from primary tumor resection to recurrence
- Recurrence limited to *either* peritoneal cavity or liver
- Complete resection of metastatic disease

Langer et al., BJS 2003.
Duodenal Mass with Liver Metastases: GIST
Metastatic GIST and response to therapy

Initial

3 months

Before Gleevec

After Gleevec
Outcomes based on response

Figure 2. Kaplan-Meier curve for disease-specific survival from the time of imatinib onset according to response at the time of selection for surgery ($P < 0.01$).
Future of GIST Therapies

- Recent scientific advances have had a profound impact in patient care
- Molecular mechanisms of drug resistance
- Identification of new targets for therapy
- Development of novel agents
- Addressing subpopulations of GIST progenitor cells and stem cells
Conclusions

• Wide clinical spectrum of GISTs from benign to more malignant tumor behavior which can be predicted based on:
 - tumor size
 - mitotic activity
 - anatomic site

• High risk GISTs have high rate of recurrence requiring multidisciplinary management
Conclusions

• No standard management of recurrent/metastatic GIST

• Important prognostic factors to consider when considering surgical resection of recurrent GIST
 - prior response to Gleevec
 - disease-free interval
 - location and number of tumor(s)
 - symptomatic tumors
 - availability other targeted agents or clinical trials
Future directions

- What is optimal duration of neoadjuvant imatinib treatment?
- Need to be able to measure response
 - Functional imaging
- New prognostic systems needed for risk stratification
 - Consider mutation status and therapy
- What is the optimal duration of adjuvant treatment?
Thank you!